Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation

MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-02, Vol.7 (2), p.e31459-e31459
Hauptverfasser: Pirko, Istvan, Chen, Yi, Lohrey, Anne K, McDole, Jeremiah, Gamez, Jeffrey D, Allen, Kathleen S, Pavelko, Kevin D, Lindquist, Diana M, Dunn, R Scott, Macura, Slobodan I, Johnson, Aaron J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e31459
container_issue 2
container_start_page e31459
container_title PloS one
container_volume 7
creator Pirko, Istvan
Chen, Yi
Lohrey, Anne K
McDole, Jeremiah
Gamez, Jeffrey D
Allen, Kathleen S
Pavelko, Kevin D
Lindquist, Diana M
Dunn, R Scott
Macura, Slobodan I
Johnson, Aaron J
description MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.
doi_str_mv 10.1371/journal.pone.0031459
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1332952637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477157431</galeid><doaj_id>oai_doaj_org_article_62624d18afa148c58f91e3203c4c2c51</doaj_id><sourcerecordid>A477157431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-34a80b002dc44bb9e53d7cf663118c19da480804ef6a2863b2e9e449d50d155c3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQwJx0eLvJDdIU_mqNGkSFG4tx3ZaFycudlJt_34OzaYG7QL5wpb9nPccv_bJspcIzhHJ0Yet70Mr3XznWzOHkCDKykfZKSoJnnEMyeOj9Un2LMYthIwUnD_NTjAmtIBFeZptFr7tgoydbdcgeGciqH0Ai08U7OM8zQVYzZRxLgLbAgmaPtjWgMZr44Cvwd4G6dxNOtS9MhqcrxConFS_wSaJnQ9ijeysb59nT2rponkxzmfZzy-fV4tvs8urr8vFxeVM8RJ1M0JlASsIsVaUVlVpGNG5qjknCBUKlVoOhUNqai5xwUmFTWkoLTWDGjGmyFn2-qC7cz6K0aQoECG4ZJiTPBHLA6G93IpdsI0MN8JLK_5u-LAWMnRWOSM45phqVMhaIlooVtQlMiQZqqjCiqGk9XHM1leN0coMZrqJ6PSktRux9ntBcF5QypLAu1Eg-D-9iZ1obBz8lq3xfRQlxjmHjOFEvvmHfPhyI7WWqX7b1j6lVYOmuKB5jlhOyVD2_AEqDW0aq9KHqm3anwS8nwQkpjPX3Vr2MYrlj-__z179mrJvj9iNka7bRO_64cfEKUgPoAo-xmDqe48RFEM_3Lkhhn4QYz-ksFfH73MfdNcA5BbnwAIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1332952637</pqid></control><display><type>article</type><title>Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pirko, Istvan ; Chen, Yi ; Lohrey, Anne K ; McDole, Jeremiah ; Gamez, Jeffrey D ; Allen, Kathleen S ; Pavelko, Kevin D ; Lindquist, Diana M ; Dunn, R Scott ; Macura, Slobodan I ; Johnson, Aaron J</creator><contributor>Klein, Robyn</contributor><creatorcontrib>Pirko, Istvan ; Chen, Yi ; Lohrey, Anne K ; McDole, Jeremiah ; Gamez, Jeffrey D ; Allen, Kathleen S ; Pavelko, Kevin D ; Lindquist, Diana M ; Dunn, R Scott ; Macura, Slobodan I ; Johnson, Aaron J ; Klein, Robyn</creatorcontrib><description>MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0031459</identifier><identifier>PMID: 22348089</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive systems ; Adoptive Transfer ; Animal experimentation ; Animal models ; Animals ; Antigenic determinants ; Automation ; Axons - pathology ; Biology ; Black holes ; Brain ; CD4 antigen ; CD4-Positive T-Lymphocytes - pathology ; CD4-Positive T-Lymphocytes - virology ; CD8 antigen ; CD8-Positive T-Lymphocytes - pathology ; CD8-Positive T-Lymphocytes - virology ; Central nervous system ; Central Nervous System - pathology ; Correlation ; Cytokines ; Cytotoxicity ; Encephalitis ; Epitopes ; Experiments ; Flow cytometry ; House mouse ; Image acquisition ; Image analysis ; Image processing ; Immune system ; Immunology ; Infections ; Inflammation ; Lesions ; Lymphocytes ; Lymphocytes T ; Magnetic Resonance Imaging ; Medical research ; Medicine ; Mice ; Models, Animal ; Multiple sclerosis ; Multiple Sclerosis - pathology ; Neurology ; Pathogenesis ; Peptides ; RAG1 protein ; Rodents ; T cells ; Theilovirus ; Viral infections ; Viruses</subject><ispartof>PloS one, 2012-02, Vol.7 (2), p.e31459-e31459</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Pirko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Pirko et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-34a80b002dc44bb9e53d7cf663118c19da480804ef6a2863b2e9e449d50d155c3</citedby><cites>FETCH-LOGICAL-c691t-34a80b002dc44bb9e53d7cf663118c19da480804ef6a2863b2e9e449d50d155c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278445/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278445/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22348089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Klein, Robyn</contributor><creatorcontrib>Pirko, Istvan</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Lohrey, Anne K</creatorcontrib><creatorcontrib>McDole, Jeremiah</creatorcontrib><creatorcontrib>Gamez, Jeffrey D</creatorcontrib><creatorcontrib>Allen, Kathleen S</creatorcontrib><creatorcontrib>Pavelko, Kevin D</creatorcontrib><creatorcontrib>Lindquist, Diana M</creatorcontrib><creatorcontrib>Dunn, R Scott</creatorcontrib><creatorcontrib>Macura, Slobodan I</creatorcontrib><creatorcontrib>Johnson, Aaron J</creatorcontrib><title>Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.</description><subject>Adaptive systems</subject><subject>Adoptive Transfer</subject><subject>Animal experimentation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigenic determinants</subject><subject>Automation</subject><subject>Axons - pathology</subject><subject>Biology</subject><subject>Black holes</subject><subject>Brain</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - pathology</subject><subject>CD4-Positive T-Lymphocytes - virology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - pathology</subject><subject>CD8-Positive T-Lymphocytes - virology</subject><subject>Central nervous system</subject><subject>Central Nervous System - pathology</subject><subject>Correlation</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Encephalitis</subject><subject>Epitopes</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>House mouse</subject><subject>Image acquisition</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Lesions</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mice</subject><subject>Models, Animal</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - pathology</subject><subject>Neurology</subject><subject>Pathogenesis</subject><subject>Peptides</subject><subject>RAG1 protein</subject><subject>Rodents</subject><subject>T cells</subject><subject>Theilovirus</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQwJx0eLvJDdIU_mqNGkSFG4tx3ZaFycudlJt_34OzaYG7QL5wpb9nPccv_bJspcIzhHJ0Yet70Mr3XznWzOHkCDKykfZKSoJnnEMyeOj9Un2LMYthIwUnD_NTjAmtIBFeZptFr7tgoydbdcgeGciqH0Ai08U7OM8zQVYzZRxLgLbAgmaPtjWgMZr44Cvwd4G6dxNOtS9MhqcrxConFS_wSaJnQ9ijeysb59nT2rponkxzmfZzy-fV4tvs8urr8vFxeVM8RJ1M0JlASsIsVaUVlVpGNG5qjknCBUKlVoOhUNqai5xwUmFTWkoLTWDGjGmyFn2-qC7cz6K0aQoECG4ZJiTPBHLA6G93IpdsI0MN8JLK_5u-LAWMnRWOSM45phqVMhaIlooVtQlMiQZqqjCiqGk9XHM1leN0coMZrqJ6PSktRux9ntBcF5QypLAu1Eg-D-9iZ1obBz8lq3xfRQlxjmHjOFEvvmHfPhyI7WWqX7b1j6lVYOmuKB5jlhOyVD2_AEqDW0aq9KHqm3anwS8nwQkpjPX3Vr2MYrlj-__z179mrJvj9iNka7bRO_64cfEKUgPoAo-xmDqe48RFEM_3Lkhhn4QYz-ksFfH73MfdNcA5BbnwAIU</recordid><startdate>20120213</startdate><enddate>20120213</enddate><creator>Pirko, Istvan</creator><creator>Chen, Yi</creator><creator>Lohrey, Anne K</creator><creator>McDole, Jeremiah</creator><creator>Gamez, Jeffrey D</creator><creator>Allen, Kathleen S</creator><creator>Pavelko, Kevin D</creator><creator>Lindquist, Diana M</creator><creator>Dunn, R Scott</creator><creator>Macura, Slobodan I</creator><creator>Johnson, Aaron J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120213</creationdate><title>Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation</title><author>Pirko, Istvan ; Chen, Yi ; Lohrey, Anne K ; McDole, Jeremiah ; Gamez, Jeffrey D ; Allen, Kathleen S ; Pavelko, Kevin D ; Lindquist, Diana M ; Dunn, R Scott ; Macura, Slobodan I ; Johnson, Aaron J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-34a80b002dc44bb9e53d7cf663118c19da480804ef6a2863b2e9e449d50d155c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive systems</topic><topic>Adoptive Transfer</topic><topic>Animal experimentation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigenic determinants</topic><topic>Automation</topic><topic>Axons - pathology</topic><topic>Biology</topic><topic>Black holes</topic><topic>Brain</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - pathology</topic><topic>CD4-Positive T-Lymphocytes - virology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - pathology</topic><topic>CD8-Positive T-Lymphocytes - virology</topic><topic>Central nervous system</topic><topic>Central Nervous System - pathology</topic><topic>Correlation</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Encephalitis</topic><topic>Epitopes</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>House mouse</topic><topic>Image acquisition</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Lesions</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mice</topic><topic>Models, Animal</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - pathology</topic><topic>Neurology</topic><topic>Pathogenesis</topic><topic>Peptides</topic><topic>RAG1 protein</topic><topic>Rodents</topic><topic>T cells</topic><topic>Theilovirus</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirko, Istvan</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Lohrey, Anne K</creatorcontrib><creatorcontrib>McDole, Jeremiah</creatorcontrib><creatorcontrib>Gamez, Jeffrey D</creatorcontrib><creatorcontrib>Allen, Kathleen S</creatorcontrib><creatorcontrib>Pavelko, Kevin D</creatorcontrib><creatorcontrib>Lindquist, Diana M</creatorcontrib><creatorcontrib>Dunn, R Scott</creatorcontrib><creatorcontrib>Macura, Slobodan I</creatorcontrib><creatorcontrib>Johnson, Aaron J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirko, Istvan</au><au>Chen, Yi</au><au>Lohrey, Anne K</au><au>McDole, Jeremiah</au><au>Gamez, Jeffrey D</au><au>Allen, Kathleen S</au><au>Pavelko, Kevin D</au><au>Lindquist, Diana M</au><au>Dunn, R Scott</au><au>Macura, Slobodan I</au><au>Johnson, Aaron J</au><au>Klein, Robyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-02-13</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>e31459</spage><epage>e31459</epage><pages>e31459-e31459</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22348089</pmid><doi>10.1371/journal.pone.0031459</doi><tpages>e31459</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-02, Vol.7 (2), p.e31459-e31459
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1332952637
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive systems
Adoptive Transfer
Animal experimentation
Animal models
Animals
Antigenic determinants
Automation
Axons - pathology
Biology
Black holes
Brain
CD4 antigen
CD4-Positive T-Lymphocytes - pathology
CD4-Positive T-Lymphocytes - virology
CD8 antigen
CD8-Positive T-Lymphocytes - pathology
CD8-Positive T-Lymphocytes - virology
Central nervous system
Central Nervous System - pathology
Correlation
Cytokines
Cytotoxicity
Encephalitis
Epitopes
Experiments
Flow cytometry
House mouse
Image acquisition
Image analysis
Image processing
Immune system
Immunology
Infections
Inflammation
Lesions
Lymphocytes
Lymphocytes T
Magnetic Resonance Imaging
Medical research
Medicine
Mice
Models, Animal
Multiple sclerosis
Multiple Sclerosis - pathology
Neurology
Pathogenesis
Peptides
RAG1 protein
Rodents
T cells
Theilovirus
Viral infections
Viruses
title Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20roles%20for%20CD4%20vs.%20CD8%20T-cells%20in%20a%20murine%20model%20of%20virally%20induced%20%22T1%20black%20hole%22%20formation&rft.jtitle=PloS%20one&rft.au=Pirko,%20Istvan&rft.date=2012-02-13&rft.volume=7&rft.issue=2&rft.spage=e31459&rft.epage=e31459&rft.pages=e31459-e31459&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0031459&rft_dat=%3Cgale_plos_%3EA477157431%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1332952637&rft_id=info:pmid/22348089&rft_galeid=A477157431&rft_doaj_id=oai_doaj_org_article_62624d18afa148c58f91e3203c4c2c51&rfr_iscdi=true