Temporal ordering of cancer microarray data through a reinforcement learning based approach
Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its developmen...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e60883-e60883 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e60883 |
---|---|
container_issue | 4 |
container_start_page | e60883 |
container_title | PloS one |
container_volume | 8 |
creator | Czibula, Gabriela Bocicor, Iuliana M Czibula, Istvan-Gergely |
description | Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal. |
doi_str_mv | 10.1371/journal.pone.0060883 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330914627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478446603</galeid><doaj_id>oai_doaj_org_article_8236f459dbb8431690fd4774fc17620c</doaj_id><sourcerecordid>A478446603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3acf24344c03e13c803859408578d3e5634a80c355be73c66b2b3bf5aee3b4713</originalsourceid><addsrcrecordid>eNqNk02L1TAUhosozjj6D0QLgujiXpOcNE03wjD4cWFgQEc3LkKann5c2qYmrTj_3tTbGW5lFtJFS_q8b5L3nBNFzynZUkjpu72dXK_b7WB73BIiiJTwIDqlGbCNYAQeHn2fRE-83xOSgBTicXTCIBEJk3Aa_bjGbrBOt7F1Bbqmr2Jbxkb3Bl3cNcZZ7Zy-iQs96nisnZ2qOtaxw6YvrTPYYT_GLWrXz9JceyxiPQxBZuqn0aNStx6fLe-z6NvHD9cXnzeXV592F-eXGyMyNm5Am5Jx4NwQQApGEpBJxolMUlkAJgK4lsRAkuSYghEiZznkZaIRIecphbPo5cF3aK1XSy5eUQCSUS5YGojdgSis3qvBNZ12N8rqRv1dsK5S2o2NaVFJBqLkSVbkueRARUbKgqcpLw1NQ5QmeL1fdpvyDgsTAgjxrUzXf_qmVpX9pUBQnmUsGLxZDJz9OaEfVdd4g22re7TTfG7GM0ElywL66h_0_tstVKXDBebChH3NbKrOeSo5F4JAoLb3UOEpMNQ5NFHZhPWV4O1KEJgRf4-VnrxXu69f_p-9-r5mXx-xNep2rL1tp7GxvV-D_ACGLvTeYXkXMiVqnoHbNNQ8A2qZgSB7cVygO9Ft08Mf_toAdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330914627</pqid></control><display><type>article</type><title>Temporal ordering of cancer microarray data through a reinforcement learning based approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Czibula, Gabriela ; Bocicor, Iuliana M ; Czibula, Istvan-Gergely</creator><creatorcontrib>Czibula, Gabriela ; Bocicor, Iuliana M ; Czibula, Istvan-Gergely</creatorcontrib><description>Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0060883</identifier><identifier>PMID: 23565283</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Bioinformatics ; Biological activity ; Biological evolution ; Biology ; Cancer ; Cell division ; Collection ; Computation ; Computational biology ; Computational Biology - methods ; Computer applications ; Computer Science ; Data collection ; Data mining ; Datasets ; Deoxyribonucleic acid ; Disease ; DNA ; DNA microarrays ; Evolution ; Experiments ; Gene expression ; Genomes ; Handbooks ; Humans ; Machine learning ; Medical research ; Medicine ; Mutation ; Neoplasms - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Oncology, Experimental ; Reinforcement ; Studies ; Temporal discrimination learning</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e60883-e60883</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Czibula et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Czibula et al 2013 Czibula et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3acf24344c03e13c803859408578d3e5634a80c355be73c66b2b3bf5aee3b4713</citedby><cites>FETCH-LOGICAL-c692t-3acf24344c03e13c803859408578d3e5634a80c355be73c66b2b3bf5aee3b4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614992/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614992/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23565283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czibula, Gabriela</creatorcontrib><creatorcontrib>Bocicor, Iuliana M</creatorcontrib><creatorcontrib>Czibula, Istvan-Gergely</creatorcontrib><title>Temporal ordering of cancer microarray data through a reinforcement learning based approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal.</description><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Collection</subject><subject>Computation</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Handbooks</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oncology, Experimental</subject><subject>Reinforcement</subject><subject>Studies</subject><subject>Temporal discrimination learning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk02L1TAUhosozjj6D0QLgujiXpOcNE03wjD4cWFgQEc3LkKann5c2qYmrTj_3tTbGW5lFtJFS_q8b5L3nBNFzynZUkjpu72dXK_b7WB73BIiiJTwIDqlGbCNYAQeHn2fRE-83xOSgBTicXTCIBEJk3Aa_bjGbrBOt7F1Bbqmr2Jbxkb3Bl3cNcZZ7Zy-iQs96nisnZ2qOtaxw6YvrTPYYT_GLWrXz9JceyxiPQxBZuqn0aNStx6fLe-z6NvHD9cXnzeXV592F-eXGyMyNm5Am5Jx4NwQQApGEpBJxolMUlkAJgK4lsRAkuSYghEiZznkZaIRIecphbPo5cF3aK1XSy5eUQCSUS5YGojdgSis3qvBNZ12N8rqRv1dsK5S2o2NaVFJBqLkSVbkueRARUbKgqcpLw1NQ5QmeL1fdpvyDgsTAgjxrUzXf_qmVpX9pUBQnmUsGLxZDJz9OaEfVdd4g22re7TTfG7GM0ElywL66h_0_tstVKXDBebChH3NbKrOeSo5F4JAoLb3UOEpMNQ5NFHZhPWV4O1KEJgRf4-VnrxXu69f_p-9-r5mXx-xNep2rL1tp7GxvV-D_ACGLvTeYXkXMiVqnoHbNNQ8A2qZgSB7cVygO9Ft08Mf_toAdw</recordid><startdate>20130402</startdate><enddate>20130402</enddate><creator>Czibula, Gabriela</creator><creator>Bocicor, Iuliana M</creator><creator>Czibula, Istvan-Gergely</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130402</creationdate><title>Temporal ordering of cancer microarray data through a reinforcement learning based approach</title><author>Czibula, Gabriela ; Bocicor, Iuliana M ; Czibula, Istvan-Gergely</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3acf24344c03e13c803859408578d3e5634a80c355be73c66b2b3bf5aee3b4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Collection</topic><topic>Computation</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Handbooks</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oncology, Experimental</topic><topic>Reinforcement</topic><topic>Studies</topic><topic>Temporal discrimination learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czibula, Gabriela</creatorcontrib><creatorcontrib>Bocicor, Iuliana M</creatorcontrib><creatorcontrib>Czibula, Istvan-Gergely</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czibula, Gabriela</au><au>Bocicor, Iuliana M</au><au>Czibula, Istvan-Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal ordering of cancer microarray data through a reinforcement learning based approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-02</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e60883</spage><epage>e60883</epage><pages>e60883-e60883</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23565283</pmid><doi>10.1371/journal.pone.0060883</doi><tpages>e60883</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e60883-e60883 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330914627 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Artificial intelligence Bioinformatics Biological activity Biological evolution Biology Cancer Cell division Collection Computation Computational biology Computational Biology - methods Computer applications Computer Science Data collection Data mining Datasets Deoxyribonucleic acid Disease DNA DNA microarrays Evolution Experiments Gene expression Genomes Handbooks Humans Machine learning Medical research Medicine Mutation Neoplasms - genetics Oligonucleotide Array Sequence Analysis - methods Oncology, Experimental Reinforcement Studies Temporal discrimination learning |
title | Temporal ordering of cancer microarray data through a reinforcement learning based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20ordering%20of%20cancer%20microarray%20data%20through%20a%20reinforcement%20learning%20based%20approach&rft.jtitle=PloS%20one&rft.au=Czibula,%20Gabriela&rft.date=2013-04-02&rft.volume=8&rft.issue=4&rft.spage=e60883&rft.epage=e60883&rft.pages=e60883-e60883&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0060883&rft_dat=%3Cgale_plos_%3EA478446603%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330914627&rft_id=info:pmid/23565283&rft_galeid=A478446603&rft_doaj_id=oai_doaj_org_article_8236f459dbb8431690fd4774fc17620c&rfr_iscdi=true |