Temporal ordering of cancer microarray data through a reinforcement learning based approach

Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its developmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e60883-e60883
Hauptverfasser: Czibula, Gabriela, Bocicor, Iuliana M, Czibula, Istvan-Gergely
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0060883