High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi
Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used hig...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e60857-e60857 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e60857 |
---|---|
container_issue | 4 |
container_start_page | e60857 |
container_title | PloS one |
container_volume | 8 |
creator | Kerr, Janice L Baldwin, Darren S Tobin, Mark J Puskar, Ljiljana Kappen, Peter Rees, Gavin N Silvester, Ewen |
description | Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5-15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column. |
doi_str_mv | 10.1371/journal.pone.0060857 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330914610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478419691</galeid><doaj_id>oai_doaj_org_article_ece02de748dc41279964ab22e42c6b02</doaj_id><sourcerecordid>A478419691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c416d043f6a1778dc2232cbc731ee6c12e68d4ec8fda199b56f6e53885ebeb183</originalsourceid><addsrcrecordid>eNqNk1tr1EAUx4Motla_gWhAEH3IOrdMkpdCKWoXCgVvr8NkcpLMksykM0l1v72z3WzZSB8kkAyT3_mfexS9xmiFaYY_bezkjOxWgzWwQoijPM2eRKe4oCThBNGnR-eT6IX3G4RSmnP-PDohNM0yzIvT6PeVbtrYD3LUsosdeNtNo7Ym1qZ20kEV91o5m_gB1OisV3bYBuwOZOfjsYW4B9VKo30f2zruQIaXbow2cQXK9oP1-l6u3MbydgpeVFxPptEvo2d1kIBX8_cs-vnl84_Lq-T65uv68uI6UbwgY6IY5hVitOYSZ1leKUIoUaXKKAbgChPgecVA5XUlcVGUKa85hCzzFEoocU7Pord73aGzXsw18wJTigrMOEaBWO-JysqNGJzupdsKK7W4v7CuEdKFuDsQoACRCjIWAmGYZEXBmSwJAUYULxEJWuezt6nsoVJgRie7hejyj9GtaOydoBznGKdB4MMs4OztBH4UvfYKuk4asNMubsIzkuZ0l9m7f9DHs5upRoYEQlNt8Kt2ouKCZTnDBS9woFaPUOGpILQ_DFitw_3C4OPCIDAj_BkbOXkv1t-__T9782vJvj9i2zBlY3sYSb8E2R4Mw-m9g_qhyBiJ3X4cqiF2-yHm_Qhmb44b9GB0WAj6F1tVDR4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330914610</pqid></control><display><type>article</type><title>High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kerr, Janice L ; Baldwin, Darren S ; Tobin, Mark J ; Puskar, Ljiljana ; Kappen, Peter ; Rees, Gavin N ; Silvester, Ewen</creator><contributor>Shah, Vishal</contributor><creatorcontrib>Kerr, Janice L ; Baldwin, Darren S ; Tobin, Mark J ; Puskar, Ljiljana ; Kappen, Peter ; Rees, Gavin N ; Silvester, Ewen ; Shah, Vishal</creatorcontrib><description>Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5-15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0060857</identifier><identifier>PMID: 23577169</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aquatic ecosystems ; Aquatic environment ; Aquatic fungi ; Aquatic Organisms - metabolism ; Bioavailability ; Biodegradability ; Biodegradation ; Biology ; Breakdown ; Breaking down ; Carbohydrate Metabolism ; Carbohydrates ; Carbon cycle ; Carbon sequestration ; Cellulose ; Chemistry ; Colonization ; Cotton ; Decomposition ; Depletion ; Dissolved organic carbon ; Earth Sciences ; Ecological and Environmental Phenomena ; Ecology ; Energy storage ; Environmental management ; Eucalyptus ; Eucalyptus - chemistry ; Eucalyptus - cytology ; Eucalyptus - microbiology ; Eucalyptus camaldulensis ; Floods ; Fourier transforms ; Fungi ; Fungi - metabolism ; Infrared spectroscopy ; Leaf litter ; Leaves ; Light sources ; Lignin ; Lignin - metabolism ; Microtechnology ; Multivariate Analysis ; Organic carbon ; Phenols ; Physics ; Plant Leaves - chemistry ; Plant Leaves - cytology ; Plant Leaves - microbiology ; Polyphenols ; Rivers ; Sediments ; Spatial discrimination ; Spatial resolution ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Water column ; Wetlands ; Xylem</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e60857-e60857</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Kerr et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Kerr et al 2013 Kerr et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c416d043f6a1778dc2232cbc731ee6c12e68d4ec8fda199b56f6e53885ebeb183</citedby><cites>FETCH-LOGICAL-c692t-c416d043f6a1778dc2232cbc731ee6c12e68d4ec8fda199b56f6e53885ebeb183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618115/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618115/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23577169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shah, Vishal</contributor><creatorcontrib>Kerr, Janice L</creatorcontrib><creatorcontrib>Baldwin, Darren S</creatorcontrib><creatorcontrib>Tobin, Mark J</creatorcontrib><creatorcontrib>Puskar, Ljiljana</creatorcontrib><creatorcontrib>Kappen, Peter</creatorcontrib><creatorcontrib>Rees, Gavin N</creatorcontrib><creatorcontrib>Silvester, Ewen</creatorcontrib><title>High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5-15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column.</description><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Aquatic fungi</subject><subject>Aquatic Organisms - metabolism</subject><subject>Bioavailability</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Breakdown</subject><subject>Breaking down</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Carbon cycle</subject><subject>Carbon sequestration</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Colonization</subject><subject>Cotton</subject><subject>Decomposition</subject><subject>Depletion</subject><subject>Dissolved organic carbon</subject><subject>Earth Sciences</subject><subject>Ecological and Environmental Phenomena</subject><subject>Ecology</subject><subject>Energy storage</subject><subject>Environmental management</subject><subject>Eucalyptus</subject><subject>Eucalyptus - chemistry</subject><subject>Eucalyptus - cytology</subject><subject>Eucalyptus - microbiology</subject><subject>Eucalyptus camaldulensis</subject><subject>Floods</subject><subject>Fourier transforms</subject><subject>Fungi</subject><subject>Fungi - metabolism</subject><subject>Infrared spectroscopy</subject><subject>Leaf litter</subject><subject>Leaves</subject><subject>Light sources</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Microtechnology</subject><subject>Multivariate Analysis</subject><subject>Organic carbon</subject><subject>Phenols</subject><subject>Physics</subject><subject>Plant Leaves - chemistry</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - microbiology</subject><subject>Polyphenols</subject><subject>Rivers</subject><subject>Sediments</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Water column</subject><subject>Wetlands</subject><subject>Xylem</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr1EAUx4Motla_gWhAEH3IOrdMkpdCKWoXCgVvr8NkcpLMksykM0l1v72z3WzZSB8kkAyT3_mfexS9xmiFaYY_bezkjOxWgzWwQoijPM2eRKe4oCThBNGnR-eT6IX3G4RSmnP-PDohNM0yzIvT6PeVbtrYD3LUsosdeNtNo7Ym1qZ20kEV91o5m_gB1OisV3bYBuwOZOfjsYW4B9VKo30f2zruQIaXbow2cQXK9oP1-l6u3MbydgpeVFxPptEvo2d1kIBX8_cs-vnl84_Lq-T65uv68uI6UbwgY6IY5hVitOYSZ1leKUIoUaXKKAbgChPgecVA5XUlcVGUKa85hCzzFEoocU7Pord73aGzXsw18wJTigrMOEaBWO-JysqNGJzupdsKK7W4v7CuEdKFuDsQoACRCjIWAmGYZEXBmSwJAUYULxEJWuezt6nsoVJgRie7hejyj9GtaOydoBznGKdB4MMs4OztBH4UvfYKuk4asNMubsIzkuZ0l9m7f9DHs5upRoYEQlNt8Kt2ouKCZTnDBS9woFaPUOGpILQ_DFitw_3C4OPCIDAj_BkbOXkv1t-__T9782vJvj9i2zBlY3sYSb8E2R4Mw-m9g_qhyBiJ3X4cqiF2-yHm_Qhmb44b9GB0WAj6F1tVDR4</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Kerr, Janice L</creator><creator>Baldwin, Darren S</creator><creator>Tobin, Mark J</creator><creator>Puskar, Ljiljana</creator><creator>Kappen, Peter</creator><creator>Rees, Gavin N</creator><creator>Silvester, Ewen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130405</creationdate><title>High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi</title><author>Kerr, Janice L ; Baldwin, Darren S ; Tobin, Mark J ; Puskar, Ljiljana ; Kappen, Peter ; Rees, Gavin N ; Silvester, Ewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c416d043f6a1778dc2232cbc731ee6c12e68d4ec8fda199b56f6e53885ebeb183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Aquatic fungi</topic><topic>Aquatic Organisms - metabolism</topic><topic>Bioavailability</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Breakdown</topic><topic>Breaking down</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Carbon cycle</topic><topic>Carbon sequestration</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Colonization</topic><topic>Cotton</topic><topic>Decomposition</topic><topic>Depletion</topic><topic>Dissolved organic carbon</topic><topic>Earth Sciences</topic><topic>Ecological and Environmental Phenomena</topic><topic>Ecology</topic><topic>Energy storage</topic><topic>Environmental management</topic><topic>Eucalyptus</topic><topic>Eucalyptus - chemistry</topic><topic>Eucalyptus - cytology</topic><topic>Eucalyptus - microbiology</topic><topic>Eucalyptus camaldulensis</topic><topic>Floods</topic><topic>Fourier transforms</topic><topic>Fungi</topic><topic>Fungi - metabolism</topic><topic>Infrared spectroscopy</topic><topic>Leaf litter</topic><topic>Leaves</topic><topic>Light sources</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Microtechnology</topic><topic>Multivariate Analysis</topic><topic>Organic carbon</topic><topic>Phenols</topic><topic>Physics</topic><topic>Plant Leaves - chemistry</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - microbiology</topic><topic>Polyphenols</topic><topic>Rivers</topic><topic>Sediments</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Water column</topic><topic>Wetlands</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerr, Janice L</creatorcontrib><creatorcontrib>Baldwin, Darren S</creatorcontrib><creatorcontrib>Tobin, Mark J</creatorcontrib><creatorcontrib>Puskar, Ljiljana</creatorcontrib><creatorcontrib>Kappen, Peter</creatorcontrib><creatorcontrib>Rees, Gavin N</creatorcontrib><creatorcontrib>Silvester, Ewen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerr, Janice L</au><au>Baldwin, Darren S</au><au>Tobin, Mark J</au><au>Puskar, Ljiljana</au><au>Kappen, Peter</au><au>Rees, Gavin N</au><au>Silvester, Ewen</au><au>Shah, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e60857</spage><epage>e60857</epage><pages>e60857-e60857</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5-15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23577169</pmid><doi>10.1371/journal.pone.0060857</doi><tpages>e60857</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e60857-e60857 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330914610 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aquatic ecosystems Aquatic environment Aquatic fungi Aquatic Organisms - metabolism Bioavailability Biodegradability Biodegradation Biology Breakdown Breaking down Carbohydrate Metabolism Carbohydrates Carbon cycle Carbon sequestration Cellulose Chemistry Colonization Cotton Decomposition Depletion Dissolved organic carbon Earth Sciences Ecological and Environmental Phenomena Ecology Energy storage Environmental management Eucalyptus Eucalyptus - chemistry Eucalyptus - cytology Eucalyptus - microbiology Eucalyptus camaldulensis Floods Fourier transforms Fungi Fungi - metabolism Infrared spectroscopy Leaf litter Leaves Light sources Lignin Lignin - metabolism Microtechnology Multivariate Analysis Organic carbon Phenols Physics Plant Leaves - chemistry Plant Leaves - cytology Plant Leaves - microbiology Polyphenols Rivers Sediments Spatial discrimination Spatial resolution Spectroscopy Spectroscopy, Fourier Transform Infrared Water column Wetlands Xylem |
title | High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20spatial%20resolution%20infrared%20micro-spectroscopy%20reveals%20the%20mechanism%20of%20leaf%20lignin%20decomposition%20by%20aquatic%20fungi&rft.jtitle=PloS%20one&rft.au=Kerr,%20Janice%20L&rft.date=2013-04-05&rft.volume=8&rft.issue=4&rft.spage=e60857&rft.epage=e60857&rft.pages=e60857-e60857&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0060857&rft_dat=%3Cgale_plos_%3EA478419691%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330914610&rft_id=info:pmid/23577169&rft_galeid=A478419691&rft_doaj_id=oai_doaj_org_article_ece02de748dc41279964ab22e42c6b02&rfr_iscdi=true |