Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes

During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-03, Vol.8 (3), p.e60025
Hauptverfasser: Ayres-Sander, Chantal E, Lauridsen, Holly, Maier, Cheryl L, Sava, Parid, Pober, Jordan S, Gonzalez, Anjelica L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e60025
container_title PloS one
container_volume 8
creator Ayres-Sander, Chantal E
Lauridsen, Holly
Maier, Cheryl L
Sava, Parid
Pober, Jordan S
Gonzalez, Anjelica L
description During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.
doi_str_mv 10.1371/journal.pone.0060025
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1330908740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a252c7a8105443c2857e3ac1d3d77931</doaj_id><sourcerecordid>2949874641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-dbe205f68e4bb526f1835b37b3c7ecaed0f6b056d6cdd60f4065362905e7aa523</originalsourceid><addsrcrecordid>eNp1Uk1v1DAQjRCIlsI_QBCJ8y5jO7azFyRU8VGpEpdythx7knjltYPtIO2_J8umpT1wsjXz3pvRm1dVbwlsCZPk4z7OKWi_nWLALYAAoPxZdUl2jG4EBfb80f-iepXzHoCzVoiX1QVlnPNWwmU13iUdMgYby4jeaV8f3JB0cTHUGHTnMdd57jL-mjGUupzQ_xCxrwPOJcVpdD7XZUxxHsZ6DhaTP7ow1BMmZ44F8-vqRa99xjfre1X9_Prl7vr75vbHt5vrz7cbw6koG9shBd6LFpuuWyo9aRnvmOyYkWg0WuhFB1xYYawV0DcgOBN0Bxyl1pyyq-r9WXfyMavVpKwIY7CDVjawIG7OCBv1Xk3JHXQ6qqid-luIaVA6FWc8Kk05NVK3BHjTMENbLpFpQyyzUu4YWbQ-rdPm7oDWLB4l7Z-IPu0EN6oh_lZMQLucbBH4sAqkuFicy39Wbs4ok2LOCfuHCQTUKQ33LHVKg1rTsNDePd7ugXR_fvYHdk62oQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330908740</pqid></control><display><type>article</type><title>Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes</title><source>Open Access: PubMed Central</source><source>PLoS</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ayres-Sander, Chantal E ; Lauridsen, Holly ; Maier, Cheryl L ; Sava, Parid ; Pober, Jordan S ; Gonzalez, Anjelica L</creator><contributor>Mohanraj, Rajesh</contributor><creatorcontrib>Ayres-Sander, Chantal E ; Lauridsen, Holly ; Maier, Cheryl L ; Sava, Parid ; Pober, Jordan S ; Gonzalez, Anjelica L ; Mohanraj, Rajesh</creatorcontrib><description>During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0060025</identifier><identifier>PMID: 23555870</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion ; Biology ; Biomedical engineering ; CD18 Antigens - metabolism ; CD18 Antigens - pharmacology ; Cell adhesion &amp; migration ; Cell Adhesion - drug effects ; Cell Movement - drug effects ; Cell Polarity - drug effects ; Cells, Cultured ; Chemokines ; Cytokines ; Endothelial cells ; Engineering ; Humans ; Inflammation ; Intercellular adhesion molecule 1 ; Intercellular Adhesion Molecule-1 - metabolism ; Interleukin 8 ; Interleukin-8 - metabolism ; Leukocyte migration ; Leukocytes (neutrophilic) ; Mac1 protein ; Medicine ; Microvasculature ; Monolayers ; Neutrophils ; Neutrophils - cytology ; Neutrophils - drug effects ; Neutrophils - metabolism ; Pericytes ; Pericytes - cytology ; Permeability ; Tethering ; Transendothelial and Transepithelial Migration - drug effects ; Veins &amp; arteries</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e60025</ispartof><rights>2013 Ayres-Sander et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Ayres-Sander et al 2013 Ayres-Sander et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-dbe205f68e4bb526f1835b37b3c7ecaed0f6b056d6cdd60f4065362905e7aa523</citedby><cites>FETCH-LOGICAL-c526t-dbe205f68e4bb526f1835b37b3c7ecaed0f6b056d6cdd60f4065362905e7aa523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23555870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mohanraj, Rajesh</contributor><creatorcontrib>Ayres-Sander, Chantal E</creatorcontrib><creatorcontrib>Lauridsen, Holly</creatorcontrib><creatorcontrib>Maier, Cheryl L</creatorcontrib><creatorcontrib>Sava, Parid</creatorcontrib><creatorcontrib>Pober, Jordan S</creatorcontrib><creatorcontrib>Gonzalez, Anjelica L</creatorcontrib><title>Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.</description><subject>Adhesion</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>CD18 Antigens - metabolism</subject><subject>CD18 Antigens - pharmacology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Movement - drug effects</subject><subject>Cell Polarity - drug effects</subject><subject>Cells, Cultured</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Endothelial cells</subject><subject>Engineering</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Intercellular adhesion molecule 1</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Interleukin 8</subject><subject>Interleukin-8 - metabolism</subject><subject>Leukocyte migration</subject><subject>Leukocytes (neutrophilic)</subject><subject>Mac1 protein</subject><subject>Medicine</subject><subject>Microvasculature</subject><subject>Monolayers</subject><subject>Neutrophils</subject><subject>Neutrophils - cytology</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - metabolism</subject><subject>Pericytes</subject><subject>Pericytes - cytology</subject><subject>Permeability</subject><subject>Tethering</subject><subject>Transendothelial and Transepithelial Migration - drug effects</subject><subject>Veins &amp; arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAQjRCIlsI_QBCJ8y5jO7azFyRU8VGpEpdythx7knjltYPtIO2_J8umpT1wsjXz3pvRm1dVbwlsCZPk4z7OKWi_nWLALYAAoPxZdUl2jG4EBfb80f-iepXzHoCzVoiX1QVlnPNWwmU13iUdMgYby4jeaV8f3JB0cTHUGHTnMdd57jL-mjGUupzQ_xCxrwPOJcVpdD7XZUxxHsZ6DhaTP7ow1BMmZ44F8-vqRa99xjfre1X9_Prl7vr75vbHt5vrz7cbw6koG9shBd6LFpuuWyo9aRnvmOyYkWg0WuhFB1xYYawV0DcgOBN0Bxyl1pyyq-r9WXfyMavVpKwIY7CDVjawIG7OCBv1Xk3JHXQ6qqid-luIaVA6FWc8Kk05NVK3BHjTMENbLpFpQyyzUu4YWbQ-rdPm7oDWLB4l7Z-IPu0EN6oh_lZMQLucbBH4sAqkuFicy39Wbs4ok2LOCfuHCQTUKQ33LHVKg1rTsNDePd7ugXR_fvYHdk62oQ</recordid><startdate>20130326</startdate><enddate>20130326</enddate><creator>Ayres-Sander, Chantal E</creator><creator>Lauridsen, Holly</creator><creator>Maier, Cheryl L</creator><creator>Sava, Parid</creator><creator>Pober, Jordan S</creator><creator>Gonzalez, Anjelica L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130326</creationdate><title>Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes</title><author>Ayres-Sander, Chantal E ; Lauridsen, Holly ; Maier, Cheryl L ; Sava, Parid ; Pober, Jordan S ; Gonzalez, Anjelica L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-dbe205f68e4bb526f1835b37b3c7ecaed0f6b056d6cdd60f4065362905e7aa523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>CD18 Antigens - metabolism</topic><topic>CD18 Antigens - pharmacology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Movement - drug effects</topic><topic>Cell Polarity - drug effects</topic><topic>Cells, Cultured</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Endothelial cells</topic><topic>Engineering</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Intercellular adhesion molecule 1</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Interleukin 8</topic><topic>Interleukin-8 - metabolism</topic><topic>Leukocyte migration</topic><topic>Leukocytes (neutrophilic)</topic><topic>Mac1 protein</topic><topic>Medicine</topic><topic>Microvasculature</topic><topic>Monolayers</topic><topic>Neutrophils</topic><topic>Neutrophils - cytology</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - metabolism</topic><topic>Pericytes</topic><topic>Pericytes - cytology</topic><topic>Permeability</topic><topic>Tethering</topic><topic>Transendothelial and Transepithelial Migration - drug effects</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayres-Sander, Chantal E</creatorcontrib><creatorcontrib>Lauridsen, Holly</creatorcontrib><creatorcontrib>Maier, Cheryl L</creatorcontrib><creatorcontrib>Sava, Parid</creatorcontrib><creatorcontrib>Pober, Jordan S</creatorcontrib><creatorcontrib>Gonzalez, Anjelica L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayres-Sander, Chantal E</au><au>Lauridsen, Holly</au><au>Maier, Cheryl L</au><au>Sava, Parid</au><au>Pober, Jordan S</au><au>Gonzalez, Anjelica L</au><au>Mohanraj, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-26</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e60025</spage><pages>e60025-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23555870</pmid><doi>10.1371/journal.pone.0060025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-03, Vol.8 (3), p.e60025
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330908740
source Open Access: PubMed Central; PLoS; MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Adhesion
Biology
Biomedical engineering
CD18 Antigens - metabolism
CD18 Antigens - pharmacology
Cell adhesion & migration
Cell Adhesion - drug effects
Cell Movement - drug effects
Cell Polarity - drug effects
Cells, Cultured
Chemokines
Cytokines
Endothelial cells
Engineering
Humans
Inflammation
Intercellular adhesion molecule 1
Intercellular Adhesion Molecule-1 - metabolism
Interleukin 8
Interleukin-8 - metabolism
Leukocyte migration
Leukocytes (neutrophilic)
Mac1 protein
Medicine
Microvasculature
Monolayers
Neutrophils
Neutrophils - cytology
Neutrophils - drug effects
Neutrophils - metabolism
Pericytes
Pericytes - cytology
Permeability
Tethering
Transendothelial and Transepithelial Migration - drug effects
Veins & arteries
title Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transendothelial%20migration%20enables%20subsequent%20transmigration%20of%20neutrophils%20through%20underlying%20pericytes&rft.jtitle=PloS%20one&rft.au=Ayres-Sander,%20Chantal%20E&rft.date=2013-03-26&rft.volume=8&rft.issue=3&rft.spage=e60025&rft.pages=e60025-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0060025&rft_dat=%3Cproquest_plos_%3E2949874641%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330908740&rft_id=info:pmid/23555870&rft_doaj_id=oai_doaj_org_article_a252c7a8105443c2857e3ac1d3d77931&rfr_iscdi=true