MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation

The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-03, Vol.8 (3), p.e58897-e58897
Hauptverfasser: Turturro, Michael V, Christenson, Megan C, Larson, Jeffery C, Young, Daniel A, Brey, Eric M, Papavasiliou, Georgia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e58897
container_issue 3
container_start_page e58897
container_title PloS one
container_volume 8
creator Turturro, Michael V
Christenson, Megan C
Larson, Jeffery C
Young, Daniel A
Brey, Eric M
Papavasiliou, Georgia
description The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.
doi_str_mv 10.1371/journal.pone.0058897
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330898433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478301045</galeid><doaj_id>oai_doaj_org_article_1bae509b1ad14fb68b37a9f5d6deddb9</doaj_id><sourcerecordid>A478301045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOncS-IFVVKSu1asXX1XLsya5XSZzaztI988dxdtNqg3pAPtgaP-9rz9gTRa9RMke4QJ_WpretqOedaWGeJBmlrHgSHSOG01meJvjpwfooeuHcOkCY5vnz6CjFWUZYRo6jP1dXNzMHrdNebyC-Ob-IlRbSbmvhIV5tlTVLqF38W_tV7DrhtajjjbA6rEzrYt3GjfBW38WdNR1Yr8HFzuum3xkobUEO5E7lZIjaYGNN7-PK2Gbn8jJ6VonawatxPol-fjn_cfZ1dnl9sTg7vZzJnKV-hhSwIimYREolBCNcVXmREkEVJSEzWVQFwpKWBWFlwihAigFnVZExJjDOCT6J3u59u9o4PtbPcYRxQhklGAdisSeUEWveWd0Iu-VGaL4LGLvkIqQoa-CoFJAlrERCIVKVOS1xIViVqVyBUiULXp_H0_qyASWh9VbUE9PpTqtXfGk2HGcsS9PB4MNoYM1tD87zRjsJdS1aMP1w75RgWuRkQN_9gz6e3UgtRUhAt5UJ58rBlJ-SguIEJSQL1PwRKgwFjZbhs1U6xCeCjxNBYDzc-aXoneOL79_-n73-NWXfH7ArELVfOVP3u483BckelNY4Z6F6KDJK-NAr99XgQ6_wsVeC7M3hAz2I7psD_wU2fxG4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330898433</pqid></control><display><type>article</type><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</creator><creatorcontrib>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</creatorcontrib><description>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0058897</identifier><identifier>PMID: 23554954</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology ; Biomechanical Phenomena ; Cell adhesion ; Cell adhesion &amp; migration ; Cell culture ; Cell Culture Techniques ; Chemistry ; Crosslinking ; Cues ; Degradation ; Elastic Modulus ; Endothelium ; Engineering ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Hydrogels ; Hydrogels - chemistry ; Materials Science ; Matrix metalloproteinase ; Matrix Metalloproteinases - chemistry ; Matrix Metalloproteinases - metabolism ; Mechanical properties ; Medicine ; Metalloproteinase ; Modulus of elasticity ; Muscles ; Neovascularization ; Peptides ; Peptides - chemistry ; Perfusion ; Photopolymerization ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Scaffolds ; Smooth muscle ; Spatial variations ; Stiffness ; Studies ; Tissue Engineering ; Tissue Scaffolds ; Vascular endothelial growth factor ; Vascularization</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e58897-e58897</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Turturro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Turturro et al 2013 Turturro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</citedby><cites>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595229/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595229/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turturro, Michael V</creatorcontrib><creatorcontrib>Christenson, Megan C</creatorcontrib><creatorcontrib>Larson, Jeffery C</creatorcontrib><creatorcontrib>Young, Daniel A</creatorcontrib><creatorcontrib>Brey, Eric M</creatorcontrib><creatorcontrib>Papavasiliou, Georgia</creatorcontrib><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</description><subject>Analysis</subject><subject>Biology</subject><subject>Biomechanical Phenomena</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Chemistry</subject><subject>Crosslinking</subject><subject>Cues</subject><subject>Degradation</subject><subject>Elastic Modulus</subject><subject>Endothelium</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinases - chemistry</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Mechanical properties</subject><subject>Medicine</subject><subject>Metalloproteinase</subject><subject>Modulus of elasticity</subject><subject>Muscles</subject><subject>Neovascularization</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Perfusion</subject><subject>Photopolymerization</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Scaffolds</subject><subject>Smooth muscle</subject><subject>Spatial variations</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular endothelial growth factor</subject><subject>Vascularization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOncS-IFVVKSu1asXX1XLsya5XSZzaztI988dxdtNqg3pAPtgaP-9rz9gTRa9RMke4QJ_WpretqOedaWGeJBmlrHgSHSOG01meJvjpwfooeuHcOkCY5vnz6CjFWUZYRo6jP1dXNzMHrdNebyC-Ob-IlRbSbmvhIV5tlTVLqF38W_tV7DrhtajjjbA6rEzrYt3GjfBW38WdNR1Yr8HFzuum3xkobUEO5E7lZIjaYGNN7-PK2Gbn8jJ6VonawatxPol-fjn_cfZ1dnl9sTg7vZzJnKV-hhSwIimYREolBCNcVXmREkEVJSEzWVQFwpKWBWFlwihAigFnVZExJjDOCT6J3u59u9o4PtbPcYRxQhklGAdisSeUEWveWd0Iu-VGaL4LGLvkIqQoa-CoFJAlrERCIVKVOS1xIViVqVyBUiULXp_H0_qyASWh9VbUE9PpTqtXfGk2HGcsS9PB4MNoYM1tD87zRjsJdS1aMP1w75RgWuRkQN_9gz6e3UgtRUhAt5UJ58rBlJ-SguIEJSQL1PwRKgwFjZbhs1U6xCeCjxNBYDzc-aXoneOL79_-n73-NWXfH7ArELVfOVP3u483BckelNY4Z6F6KDJK-NAr99XgQ6_wsVeC7M3hAz2I7psD_wU2fxG4</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Turturro, Michael V</creator><creator>Christenson, Megan C</creator><creator>Larson, Jeffery C</creator><creator>Young, Daniel A</creator><creator>Brey, Eric M</creator><creator>Papavasiliou, Georgia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130312</creationdate><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><author>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Biology</topic><topic>Biomechanical Phenomena</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Chemistry</topic><topic>Crosslinking</topic><topic>Cues</topic><topic>Degradation</topic><topic>Elastic Modulus</topic><topic>Endothelium</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinases - chemistry</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Mechanical properties</topic><topic>Medicine</topic><topic>Metalloproteinase</topic><topic>Modulus of elasticity</topic><topic>Muscles</topic><topic>Neovascularization</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Perfusion</topic><topic>Photopolymerization</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Scaffolds</topic><topic>Smooth muscle</topic><topic>Spatial variations</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular endothelial growth factor</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turturro, Michael V</creatorcontrib><creatorcontrib>Christenson, Megan C</creatorcontrib><creatorcontrib>Larson, Jeffery C</creatorcontrib><creatorcontrib>Young, Daniel A</creatorcontrib><creatorcontrib>Brey, Eric M</creatorcontrib><creatorcontrib>Papavasiliou, Georgia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turturro, Michael V</au><au>Christenson, Megan C</au><au>Larson, Jeffery C</au><au>Young, Daniel A</au><au>Brey, Eric M</au><au>Papavasiliou, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e58897</spage><epage>e58897</epage><pages>e58897-e58897</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23554954</pmid><doi>10.1371/journal.pone.0058897</doi><tpages>e58897</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-03, Vol.8 (3), p.e58897-e58897
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330898433
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Biology
Biomechanical Phenomena
Cell adhesion
Cell adhesion & migration
Cell culture
Cell Culture Techniques
Chemistry
Crosslinking
Cues
Degradation
Elastic Modulus
Endothelium
Engineering
Extracellular matrix
Extracellular Matrix - chemistry
Extracellular Matrix - metabolism
Human Umbilical Vein Endothelial Cells - cytology
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Hydrogels
Hydrogels - chemistry
Materials Science
Matrix metalloproteinase
Matrix Metalloproteinases - chemistry
Matrix Metalloproteinases - metabolism
Mechanical properties
Medicine
Metalloproteinase
Modulus of elasticity
Muscles
Neovascularization
Peptides
Peptides - chemistry
Perfusion
Photopolymerization
Polyethylene glycol
Polyethylene Glycols - chemistry
Scaffolds
Smooth muscle
Spatial variations
Stiffness
Studies
Tissue Engineering
Tissue Scaffolds
Vascular endothelial growth factor
Vascularization
title MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MMP-sensitive%20PEG%20diacrylate%20hydrogels%20with%20spatial%20variations%20in%20matrix%20properties%20stimulate%20directional%20vascular%20sprout%20formation&rft.jtitle=PloS%20one&rft.au=Turturro,%20Michael%20V&rft.date=2013-03-12&rft.volume=8&rft.issue=3&rft.spage=e58897&rft.epage=e58897&rft.pages=e58897-e58897&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0058897&rft_dat=%3Cgale_plos_%3EA478301045%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330898433&rft_id=info:pmid/23554954&rft_galeid=A478301045&rft_doaj_id=oai_doaj_org_article_1bae509b1ad14fb68b37a9f5d6deddb9&rfr_iscdi=true