MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation
The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-03, Vol.8 (3), p.e58897-e58897 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e58897 |
---|---|
container_issue | 3 |
container_start_page | e58897 |
container_title | PloS one |
container_volume | 8 |
creator | Turturro, Michael V Christenson, Megan C Larson, Jeffery C Young, Daniel A Brey, Eric M Papavasiliou, Georgia |
description | The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration. |
doi_str_mv | 10.1371/journal.pone.0058897 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330898433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478301045</galeid><doaj_id>oai_doaj_org_article_1bae509b1ad14fb68b37a9f5d6deddb9</doaj_id><sourcerecordid>A478301045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOncS-IFVVKSu1asXX1XLsya5XSZzaztI988dxdtNqg3pAPtgaP-9rz9gTRa9RMke4QJ_WpretqOedaWGeJBmlrHgSHSOG01meJvjpwfooeuHcOkCY5vnz6CjFWUZYRo6jP1dXNzMHrdNebyC-Ob-IlRbSbmvhIV5tlTVLqF38W_tV7DrhtajjjbA6rEzrYt3GjfBW38WdNR1Yr8HFzuum3xkobUEO5E7lZIjaYGNN7-PK2Gbn8jJ6VonawatxPol-fjn_cfZ1dnl9sTg7vZzJnKV-hhSwIimYREolBCNcVXmREkEVJSEzWVQFwpKWBWFlwihAigFnVZExJjDOCT6J3u59u9o4PtbPcYRxQhklGAdisSeUEWveWd0Iu-VGaL4LGLvkIqQoa-CoFJAlrERCIVKVOS1xIViVqVyBUiULXp_H0_qyASWh9VbUE9PpTqtXfGk2HGcsS9PB4MNoYM1tD87zRjsJdS1aMP1w75RgWuRkQN_9gz6e3UgtRUhAt5UJ58rBlJ-SguIEJSQL1PwRKgwFjZbhs1U6xCeCjxNBYDzc-aXoneOL79_-n73-NWXfH7ArELVfOVP3u483BckelNY4Z6F6KDJK-NAr99XgQ6_wsVeC7M3hAz2I7psD_wU2fxG4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330898433</pqid></control><display><type>article</type><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</creator><creatorcontrib>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</creatorcontrib><description>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0058897</identifier><identifier>PMID: 23554954</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology ; Biomechanical Phenomena ; Cell adhesion ; Cell adhesion & migration ; Cell culture ; Cell Culture Techniques ; Chemistry ; Crosslinking ; Cues ; Degradation ; Elastic Modulus ; Endothelium ; Engineering ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Hydrogels ; Hydrogels - chemistry ; Materials Science ; Matrix metalloproteinase ; Matrix Metalloproteinases - chemistry ; Matrix Metalloproteinases - metabolism ; Mechanical properties ; Medicine ; Metalloproteinase ; Modulus of elasticity ; Muscles ; Neovascularization ; Peptides ; Peptides - chemistry ; Perfusion ; Photopolymerization ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Scaffolds ; Smooth muscle ; Spatial variations ; Stiffness ; Studies ; Tissue Engineering ; Tissue Scaffolds ; Vascular endothelial growth factor ; Vascularization</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e58897-e58897</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Turturro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Turturro et al 2013 Turturro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</citedby><cites>FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595229/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595229/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23554954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turturro, Michael V</creatorcontrib><creatorcontrib>Christenson, Megan C</creatorcontrib><creatorcontrib>Larson, Jeffery C</creatorcontrib><creatorcontrib>Young, Daniel A</creatorcontrib><creatorcontrib>Brey, Eric M</creatorcontrib><creatorcontrib>Papavasiliou, Georgia</creatorcontrib><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</description><subject>Analysis</subject><subject>Biology</subject><subject>Biomechanical Phenomena</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Chemistry</subject><subject>Crosslinking</subject><subject>Cues</subject><subject>Degradation</subject><subject>Elastic Modulus</subject><subject>Endothelium</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinases - chemistry</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Mechanical properties</subject><subject>Medicine</subject><subject>Metalloproteinase</subject><subject>Modulus of elasticity</subject><subject>Muscles</subject><subject>Neovascularization</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Perfusion</subject><subject>Photopolymerization</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Scaffolds</subject><subject>Smooth muscle</subject><subject>Spatial variations</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular endothelial growth factor</subject><subject>Vascularization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOncS-IFVVKSu1asXX1XLsya5XSZzaztI988dxdtNqg3pAPtgaP-9rz9gTRa9RMke4QJ_WpretqOedaWGeJBmlrHgSHSOG01meJvjpwfooeuHcOkCY5vnz6CjFWUZYRo6jP1dXNzMHrdNebyC-Ob-IlRbSbmvhIV5tlTVLqF38W_tV7DrhtajjjbA6rEzrYt3GjfBW38WdNR1Yr8HFzuum3xkobUEO5E7lZIjaYGNN7-PK2Gbn8jJ6VonawatxPol-fjn_cfZ1dnl9sTg7vZzJnKV-hhSwIimYREolBCNcVXmREkEVJSEzWVQFwpKWBWFlwihAigFnVZExJjDOCT6J3u59u9o4PtbPcYRxQhklGAdisSeUEWveWd0Iu-VGaL4LGLvkIqQoa-CoFJAlrERCIVKVOS1xIViVqVyBUiULXp_H0_qyASWh9VbUE9PpTqtXfGk2HGcsS9PB4MNoYM1tD87zRjsJdS1aMP1w75RgWuRkQN_9gz6e3UgtRUhAt5UJ58rBlJ-SguIEJSQL1PwRKgwFjZbhs1U6xCeCjxNBYDzc-aXoneOL79_-n73-NWXfH7ArELVfOVP3u483BckelNY4Z6F6KDJK-NAr99XgQ6_wsVeC7M3hAz2I7psD_wU2fxG4</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Turturro, Michael V</creator><creator>Christenson, Megan C</creator><creator>Larson, Jeffery C</creator><creator>Young, Daniel A</creator><creator>Brey, Eric M</creator><creator>Papavasiliou, Georgia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130312</creationdate><title>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</title><author>Turturro, Michael V ; Christenson, Megan C ; Larson, Jeffery C ; Young, Daniel A ; Brey, Eric M ; Papavasiliou, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1de97079c1dd04313ff6724a8d84053c7f713c8b749b098ee23e35f7599a33643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Biology</topic><topic>Biomechanical Phenomena</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Chemistry</topic><topic>Crosslinking</topic><topic>Cues</topic><topic>Degradation</topic><topic>Elastic Modulus</topic><topic>Endothelium</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinases - chemistry</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Mechanical properties</topic><topic>Medicine</topic><topic>Metalloproteinase</topic><topic>Modulus of elasticity</topic><topic>Muscles</topic><topic>Neovascularization</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Perfusion</topic><topic>Photopolymerization</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Scaffolds</topic><topic>Smooth muscle</topic><topic>Spatial variations</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular endothelial growth factor</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turturro, Michael V</creatorcontrib><creatorcontrib>Christenson, Megan C</creatorcontrib><creatorcontrib>Larson, Jeffery C</creatorcontrib><creatorcontrib>Young, Daniel A</creatorcontrib><creatorcontrib>Brey, Eric M</creatorcontrib><creatorcontrib>Papavasiliou, Georgia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turturro, Michael V</au><au>Christenson, Megan C</au><au>Larson, Jeffery C</au><au>Young, Daniel A</au><au>Brey, Eric M</au><au>Papavasiliou, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e58897</spage><epage>e58897</epage><pages>e58897-e58897</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The spatial presentation of immobilized extracellular matrix (ECM) cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP)-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP). Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23554954</pmid><doi>10.1371/journal.pone.0058897</doi><tpages>e58897</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-03, Vol.8 (3), p.e58897-e58897 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330898433 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analysis Biology Biomechanical Phenomena Cell adhesion Cell adhesion & migration Cell culture Cell Culture Techniques Chemistry Crosslinking Cues Degradation Elastic Modulus Endothelium Engineering Extracellular matrix Extracellular Matrix - chemistry Extracellular Matrix - metabolism Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - metabolism Humans Hydrogels Hydrogels - chemistry Materials Science Matrix metalloproteinase Matrix Metalloproteinases - chemistry Matrix Metalloproteinases - metabolism Mechanical properties Medicine Metalloproteinase Modulus of elasticity Muscles Neovascularization Peptides Peptides - chemistry Perfusion Photopolymerization Polyethylene glycol Polyethylene Glycols - chemistry Scaffolds Smooth muscle Spatial variations Stiffness Studies Tissue Engineering Tissue Scaffolds Vascular endothelial growth factor Vascularization |
title | MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MMP-sensitive%20PEG%20diacrylate%20hydrogels%20with%20spatial%20variations%20in%20matrix%20properties%20stimulate%20directional%20vascular%20sprout%20formation&rft.jtitle=PloS%20one&rft.au=Turturro,%20Michael%20V&rft.date=2013-03-12&rft.volume=8&rft.issue=3&rft.spage=e58897&rft.epage=e58897&rft.pages=e58897-e58897&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0058897&rft_dat=%3Cgale_plos_%3EA478301045%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330898433&rft_id=info:pmid/23554954&rft_galeid=A478301045&rft_doaj_id=oai_doaj_org_article_1bae509b1ad14fb68b37a9f5d6deddb9&rfr_iscdi=true |