Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress

Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e60792
Hauptverfasser: Selemidis, Stavros, Seow, Huei Jiunn, Broughton, Brad R S, Vinh, Antony, Bozinovski, Steven, Sobey, Christopher G, Drummond, Grant R, Vlahos, Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e60792
container_title PloS one
container_volume 8
creator Selemidis, Stavros
Seow, Huei Jiunn
Broughton, Brad R S
Vinh, Antony
Bozinovski, Steven
Sobey, Christopher G
Drummond, Grant R
Vlahos, Ross
description Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.
doi_str_mv 10.1371/journal.pone.0060792
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330895223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478387435</galeid><doaj_id>oai_doaj_org_article_532e52ff86a449b6a2b088e8d5da0bfe</doaj_id><sourcerecordid>A478387435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-694c2841723103df1eeb71c30507c507ce6bb84e55e30a1ce96d572af678b8523</originalsourceid><addsrcrecordid>eNqNkltr2zAYhs1YWbtu_2BshsFgF8l0sA6-GZSyQ6C0sBO7E7L0OVGwrVSyQ7ZfP6VxSwwbDGNspOd7LF6_WfYCozmmAr9b-yF0uplvfAdzhDgSJXmUneGSkhkniD4-ej_Nnsa4RohRyfmT7JRQJgTm6Cz7ee13OPc7Z3WEPA6bTYAYIeauq5sBut861_nWhSHOXGcHAzZvhm55t63bVvfOd7nu7EHRu22S9HvFs-yk1k2E5-PzPPv-8cO3y8-zq5tPi8uLq5nhJelnvCwMkQUWhGJEbY0BKoENRQwJs7-BV5UsgDGgSGMDJbdMEF1zISvJCD3PXh28m8ZHNYYSFaYUyZIRQhOxOBDW67XaBNfq8Et57dTdgg9LpUPvTAOKUQKM1LXkuijKimtSISlBWmY1qmpIrvfj14aqBWug64NuJtLpTudWaum3iqbfgJFIgtejIPjbAWL_jyOP1FKnU6WsfZKZ1kWjLgohqRQFZYma_4VKl4XWmVSL2qX1ycDbyUBietj1Sz3EqBZfv_w_e_Njyr45Ylegm34VfTPsyxGnYHEATfAxBqgfksNI7Vt9n4bat1qNrU5jL49Tfxi6rzH9A6dt8tk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330895223</pqid></control><display><type>article</type><title>Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Selemidis, Stavros ; Seow, Huei Jiunn ; Broughton, Brad R S ; Vinh, Antony ; Bozinovski, Steven ; Sobey, Christopher G ; Drummond, Grant R ; Vlahos, Ross</creator><creatorcontrib>Selemidis, Stavros ; Seow, Huei Jiunn ; Broughton, Brad R S ; Vinh, Antony ; Bozinovski, Steven ; Sobey, Christopher G ; Drummond, Grant R ; Vlahos, Ross</creatorcontrib><description>Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0060792</identifier><identifier>PMID: 23577160</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alveoli ; Analysis ; Animals ; Biology ; Body Weight ; Bronchoalveolar Lavage Fluid - virology ; CCL3 protein ; CD4 antigen ; CD8 antigen ; Chemokines ; Chemokines - metabolism ; CYBB protein ; Cytokines ; Endothelial cells ; Endothelium ; Enzymes ; Gene Deletion ; Gene expression ; Granulocyte-macrophage colony-stimulating factor ; Health aspects ; Histopathology ; Infections ; Infiltration ; Inflammation ; Inflammation - enzymology ; Inflammation - immunology ; Inflammation - metabolism ; Inflammation - virology ; Inflammatory response ; Influenza ; Influenza A ; Influenza A virus - physiology ; Interferon ; Interleukin 10 ; Interleukin 6 ; Localization ; Lung - enzymology ; Lung - immunology ; Lung - metabolism ; Lung - virology ; Lungs ; Lymphocytes ; Lymphocytes T ; Male ; Medicine ; Mice ; Mice, Inbred C57BL ; Monocyte chemoattractant protein 1 ; NAD(P)H oxidase ; NADH, NADPH Oxidoreductases - deficiency ; NADH, NADPH Oxidoreductases - genetics ; NADH, NADPH Oxidoreductases - metabolism ; NADPH Oxidase 1 ; Neutrophilia ; Nitric oxide ; Oxidase ; Oxidases ; Oxidative Stress ; Peroxynitrous Acid - biosynthesis ; Peroxynitrous Acid - metabolism ; Pharmacology ; Phenotype ; Rodents ; Superoxides - metabolism ; T-Lymphocyte Subsets - immunology ; Tumor necrosis factor-α ; Viral infections ; Viral Load ; Viruses ; γ-Interferon</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e60792</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Selemidis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Selemidis et al 2013 Selemidis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-694c2841723103df1eeb71c30507c507ce6bb84e55e30a1ce96d572af678b8523</citedby><cites>FETCH-LOGICAL-c692t-694c2841723103df1eeb71c30507c507ce6bb84e55e30a1ce96d572af678b8523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23577160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selemidis, Stavros</creatorcontrib><creatorcontrib>Seow, Huei Jiunn</creatorcontrib><creatorcontrib>Broughton, Brad R S</creatorcontrib><creatorcontrib>Vinh, Antony</creatorcontrib><creatorcontrib>Bozinovski, Steven</creatorcontrib><creatorcontrib>Sobey, Christopher G</creatorcontrib><creatorcontrib>Drummond, Grant R</creatorcontrib><creatorcontrib>Vlahos, Ross</creatorcontrib><title>Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.</description><subject>Alveoli</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology</subject><subject>Body Weight</subject><subject>Bronchoalveolar Lavage Fluid - virology</subject><subject>CCL3 protein</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Chemokines</subject><subject>Chemokines - metabolism</subject><subject>CYBB protein</subject><subject>Cytokines</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Enzymes</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Health aspects</subject><subject>Histopathology</subject><subject>Infections</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Inflammation - enzymology</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - virology</subject><subject>Inflammatory response</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus - physiology</subject><subject>Interferon</subject><subject>Interleukin 10</subject><subject>Interleukin 6</subject><subject>Localization</subject><subject>Lung - enzymology</subject><subject>Lung - immunology</subject><subject>Lung - metabolism</subject><subject>Lung - virology</subject><subject>Lungs</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Monocyte chemoattractant protein 1</subject><subject>NAD(P)H oxidase</subject><subject>NADH, NADPH Oxidoreductases - deficiency</subject><subject>NADH, NADPH Oxidoreductases - genetics</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>NADPH Oxidase 1</subject><subject>Neutrophilia</subject><subject>Nitric oxide</subject><subject>Oxidase</subject><subject>Oxidases</subject><subject>Oxidative Stress</subject><subject>Peroxynitrous Acid - biosynthesis</subject><subject>Peroxynitrous Acid - metabolism</subject><subject>Pharmacology</subject><subject>Phenotype</subject><subject>Rodents</subject><subject>Superoxides - metabolism</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>Tumor necrosis factor-α</subject><subject>Viral infections</subject><subject>Viral Load</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr2zAYhs1YWbtu_2BshsFgF8l0sA6-GZSyQ6C0sBO7E7L0OVGwrVSyQ7ZfP6VxSwwbDGNspOd7LF6_WfYCozmmAr9b-yF0uplvfAdzhDgSJXmUneGSkhkniD4-ej_Nnsa4RohRyfmT7JRQJgTm6Cz7ee13OPc7Z3WEPA6bTYAYIeauq5sBut861_nWhSHOXGcHAzZvhm55t63bVvfOd7nu7EHRu22S9HvFs-yk1k2E5-PzPPv-8cO3y8-zq5tPi8uLq5nhJelnvCwMkQUWhGJEbY0BKoENRQwJs7-BV5UsgDGgSGMDJbdMEF1zISvJCD3PXh28m8ZHNYYSFaYUyZIRQhOxOBDW67XaBNfq8Et57dTdgg9LpUPvTAOKUQKM1LXkuijKimtSISlBWmY1qmpIrvfj14aqBWug64NuJtLpTudWaum3iqbfgJFIgtejIPjbAWL_jyOP1FKnU6WsfZKZ1kWjLgohqRQFZYma_4VKl4XWmVSL2qX1ycDbyUBietj1Sz3EqBZfv_w_e_Njyr45Ylegm34VfTPsyxGnYHEATfAxBqgfksNI7Vt9n4bat1qNrU5jL49Tfxi6rzH9A6dt8tk</recordid><startdate>20130408</startdate><enddate>20130408</enddate><creator>Selemidis, Stavros</creator><creator>Seow, Huei Jiunn</creator><creator>Broughton, Brad R S</creator><creator>Vinh, Antony</creator><creator>Bozinovski, Steven</creator><creator>Sobey, Christopher G</creator><creator>Drummond, Grant R</creator><creator>Vlahos, Ross</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130408</creationdate><title>Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress</title><author>Selemidis, Stavros ; Seow, Huei Jiunn ; Broughton, Brad R S ; Vinh, Antony ; Bozinovski, Steven ; Sobey, Christopher G ; Drummond, Grant R ; Vlahos, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-694c2841723103df1eeb71c30507c507ce6bb84e55e30a1ce96d572af678b8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alveoli</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology</topic><topic>Body Weight</topic><topic>Bronchoalveolar Lavage Fluid - virology</topic><topic>CCL3 protein</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Chemokines</topic><topic>Chemokines - metabolism</topic><topic>CYBB protein</topic><topic>Cytokines</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Enzymes</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Health aspects</topic><topic>Histopathology</topic><topic>Infections</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Inflammation - enzymology</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - virology</topic><topic>Inflammatory response</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus - physiology</topic><topic>Interferon</topic><topic>Interleukin 10</topic><topic>Interleukin 6</topic><topic>Localization</topic><topic>Lung - enzymology</topic><topic>Lung - immunology</topic><topic>Lung - metabolism</topic><topic>Lung - virology</topic><topic>Lungs</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Monocyte chemoattractant protein 1</topic><topic>NAD(P)H oxidase</topic><topic>NADH, NADPH Oxidoreductases - deficiency</topic><topic>NADH, NADPH Oxidoreductases - genetics</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>NADPH Oxidase 1</topic><topic>Neutrophilia</topic><topic>Nitric oxide</topic><topic>Oxidase</topic><topic>Oxidases</topic><topic>Oxidative Stress</topic><topic>Peroxynitrous Acid - biosynthesis</topic><topic>Peroxynitrous Acid - metabolism</topic><topic>Pharmacology</topic><topic>Phenotype</topic><topic>Rodents</topic><topic>Superoxides - metabolism</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>Tumor necrosis factor-α</topic><topic>Viral infections</topic><topic>Viral Load</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selemidis, Stavros</creatorcontrib><creatorcontrib>Seow, Huei Jiunn</creatorcontrib><creatorcontrib>Broughton, Brad R S</creatorcontrib><creatorcontrib>Vinh, Antony</creatorcontrib><creatorcontrib>Bozinovski, Steven</creatorcontrib><creatorcontrib>Sobey, Christopher G</creatorcontrib><creatorcontrib>Drummond, Grant R</creatorcontrib><creatorcontrib>Vlahos, Ross</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selemidis, Stavros</au><au>Seow, Huei Jiunn</au><au>Broughton, Brad R S</au><au>Vinh, Antony</au><au>Bozinovski, Steven</au><au>Sobey, Christopher G</au><au>Drummond, Grant R</au><au>Vlahos, Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-08</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e60792</spage><pages>e60792-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y)) mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4) PFU) influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y) mice resulted in significantly greater: loss of bodyweight (Day 3); BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y) lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y) mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+) and CD4(+) T lymphocytes, and of Tregs were similar between WT and Nox1(-/y) mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear to have opposing roles in the regulation of inflammation caused by influenza A viruses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23577160</pmid><doi>10.1371/journal.pone.0060792</doi><tpages>e60792</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e60792
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330895223
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alveoli
Analysis
Animals
Biology
Body Weight
Bronchoalveolar Lavage Fluid - virology
CCL3 protein
CD4 antigen
CD8 antigen
Chemokines
Chemokines - metabolism
CYBB protein
Cytokines
Endothelial cells
Endothelium
Enzymes
Gene Deletion
Gene expression
Granulocyte-macrophage colony-stimulating factor
Health aspects
Histopathology
Infections
Infiltration
Inflammation
Inflammation - enzymology
Inflammation - immunology
Inflammation - metabolism
Inflammation - virology
Inflammatory response
Influenza
Influenza A
Influenza A virus - physiology
Interferon
Interleukin 10
Interleukin 6
Localization
Lung - enzymology
Lung - immunology
Lung - metabolism
Lung - virology
Lungs
Lymphocytes
Lymphocytes T
Male
Medicine
Mice
Mice, Inbred C57BL
Monocyte chemoattractant protein 1
NAD(P)H oxidase
NADH, NADPH Oxidoreductases - deficiency
NADH, NADPH Oxidoreductases - genetics
NADH, NADPH Oxidoreductases - metabolism
NADPH Oxidase 1
Neutrophilia
Nitric oxide
Oxidase
Oxidases
Oxidative Stress
Peroxynitrous Acid - biosynthesis
Peroxynitrous Acid - metabolism
Pharmacology
Phenotype
Rodents
Superoxides - metabolism
T-Lymphocyte Subsets - immunology
Tumor necrosis factor-α
Viral infections
Viral Load
Viruses
γ-Interferon
title Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nox1%20oxidase%20suppresses%20influenza%20a%20virus-induced%20lung%20inflammation%20and%20oxidative%20stress&rft.jtitle=PloS%20one&rft.au=Selemidis,%20Stavros&rft.date=2013-04-08&rft.volume=8&rft.issue=4&rft.spage=e60792&rft.pages=e60792-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0060792&rft_dat=%3Cgale_plos_%3EA478387435%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330895223&rft_id=info:pmid/23577160&rft_galeid=A478387435&rft_doaj_id=oai_doaj_org_article_532e52ff86a449b6a2b088e8d5da0bfe&rfr_iscdi=true