Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e60650-e60650 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e60650 |
---|---|
container_issue | 4 |
container_start_page | e60650 |
container_title | PloS one |
container_volume | 8 |
creator | Debray, Thomas P A Moons, Karel G M Abo-Zaid, Ghada Mohammed Abdallah Koffijberg, Hendrik Riley, Richard David |
description | A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the results from multiple studies in individual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results, but empirical comparisons are few.
We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the methods in an empirical dataset for unadjusted and adjusted risk-factor estimates.
Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage (OR = 1.35, [Formula: see text]) and univariate two-stage (OR = 1.55, [Formula: see text]). Estimation issues can also arise: two-stage models suffer unstable estimates when zero cell counts occur and one-stage models do not always converge.
When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation. |
doi_str_mv | 10.1371/journal.pone.0060650 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330894975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478361147</galeid><doaj_id>oai_doaj_org_article_86142c621bcb4bd8a27769c310a3903c</doaj_id><sourcerecordid>A478361147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-926aa4b2d3f7554a3d7eb023d490b85c3be78221fa4e5b691b52832fdac3dca93</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEoqXwBggiISG4yOJTbIcLUFVxWKlSJY6X1sR2dr1K4iV2Cn17vN202qBeIF_49M3_e8aTZU8xWmAq8JuNH4ce2sXW93aBEEe8RPeyY1xRUnCC6P2D9VH2KIQNQiWVnD_MjggtZSkZOc5-LnvjLp0Zoc23MESn3Rb6mBuIkHc2QgHJ5Cq4kDd-yCGvXQ_DVe7HqH1n3-bJvQgRVjZP1_G332_eP84eNNAG-2SaT7LvHz98O_tcnF98Wp6dnheaVyQWFeEArCaGNqIsGVAjbI0INaxCtSw1ra2QhOAGmC1rXuG6JJKSxoCmRkNFT7Lne91t64OaahIUphTJilWiTMRyTxgPG7UdXJferzw4dX3gh5W6zru1SnLMiOYE17pmtZFAhOCVphgBrRDVSevd5DbWnTXa9nGAdiY6v-ndWq38paJJVAqSBF5NAoP_NdoQVeeCtm0LvfXj7t3JkkiBWUJf_IPend1ErSAl4PrGJ1-9E1WnTEjKMWYiUYs7qDSM7ZxOX9i4dD4LeD0LSEy0f-IKxhDU8uuX_2cvfszZlwfs2kIb18G3Y3S-D3OQ7UE9-BAG29wWGSO16_-baqhd_6up_1PYs8MPug26aXj6F-1j_0Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330894975</pqid></control><display><type>article</type><title>Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?</title><source>Directory of Open Access Journals (DOAJ)</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Debray, Thomas P A ; Moons, Karel G M ; Abo-Zaid, Ghada Mohammed Abdallah ; Koffijberg, Hendrik ; Riley, Richard David</creator><creatorcontrib>Debray, Thomas P A ; Moons, Karel G M ; Abo-Zaid, Ghada Mohammed Abdallah ; Koffijberg, Hendrik ; Riley, Richard David</creatorcontrib><description>A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the results from multiple studies in individual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results, but empirical comparisons are few.
We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the methods in an empirical dataset for unadjusted and adjusted risk-factor estimates.
Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage (OR = 1.35, [Formula: see text]) and univariate two-stage (OR = 1.55, [Formula: see text]). Estimation issues can also arise: two-stage models suffer unstable estimates when zero cell counts occur and one-stage models do not always converge.
When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0060650</identifier><identifier>PMID: 23585842</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Approximation ; Data processing ; Empirical analysis ; Epidemiology ; Erythema ; Estimates ; Generalized linear models ; Health sciences ; Humans ; Mathematical models ; Mathematics ; Medical prognosis ; Medical research ; Medicine ; Meta-analysis ; Methods ; Models, Statistical ; Multivariate analysis ; Normal distribution ; Normality ; Odds Ratio ; Parameter estimation ; Primary care ; Public health ; Regression Analysis ; Risk analysis ; Risk Factors ; Statistical analysis ; Statistics ; Studies ; Treatment Outcome ; Venous Thrombosis - diagnosis ; Venous Thrombosis - surgery ; Venous Thrombosis - therapy</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e60650-e60650</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Debray et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Debray et al 2013 Debray et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-926aa4b2d3f7554a3d7eb023d490b85c3be78221fa4e5b691b52832fdac3dca93</citedby><cites>FETCH-LOGICAL-c692t-926aa4b2d3f7554a3d7eb023d490b85c3be78221fa4e5b691b52832fdac3dca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23585842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Debray, Thomas P A</creatorcontrib><creatorcontrib>Moons, Karel G M</creatorcontrib><creatorcontrib>Abo-Zaid, Ghada Mohammed Abdallah</creatorcontrib><creatorcontrib>Koffijberg, Hendrik</creatorcontrib><creatorcontrib>Riley, Richard David</creatorcontrib><title>Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the results from multiple studies in individual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results, but empirical comparisons are few.
We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the methods in an empirical dataset for unadjusted and adjusted risk-factor estimates.
Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage (OR = 1.35, [Formula: see text]) and univariate two-stage (OR = 1.55, [Formula: see text]). Estimation issues can also arise: two-stage models suffer unstable estimates when zero cell counts occur and one-stage models do not always converge.
When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Data processing</subject><subject>Empirical analysis</subject><subject>Epidemiology</subject><subject>Erythema</subject><subject>Estimates</subject><subject>Generalized linear models</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Meta-analysis</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Normal distribution</subject><subject>Normality</subject><subject>Odds Ratio</subject><subject>Parameter estimation</subject><subject>Primary care</subject><subject>Public health</subject><subject>Regression Analysis</subject><subject>Risk analysis</subject><subject>Risk Factors</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Studies</subject><subject>Treatment Outcome</subject><subject>Venous Thrombosis - diagnosis</subject><subject>Venous Thrombosis - surgery</subject><subject>Venous Thrombosis - therapy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttu1DAQhiMEoqXwBggiISG4yOJTbIcLUFVxWKlSJY6X1sR2dr1K4iV2Cn17vN202qBeIF_49M3_e8aTZU8xWmAq8JuNH4ce2sXW93aBEEe8RPeyY1xRUnCC6P2D9VH2KIQNQiWVnD_MjggtZSkZOc5-LnvjLp0Zoc23MESn3Rb6mBuIkHc2QgHJ5Cq4kDd-yCGvXQ_DVe7HqH1n3-bJvQgRVjZP1_G332_eP84eNNAG-2SaT7LvHz98O_tcnF98Wp6dnheaVyQWFeEArCaGNqIsGVAjbI0INaxCtSw1ra2QhOAGmC1rXuG6JJKSxoCmRkNFT7Lne91t64OaahIUphTJilWiTMRyTxgPG7UdXJferzw4dX3gh5W6zru1SnLMiOYE17pmtZFAhOCVphgBrRDVSevd5DbWnTXa9nGAdiY6v-ndWq38paJJVAqSBF5NAoP_NdoQVeeCtm0LvfXj7t3JkkiBWUJf_IPend1ErSAl4PrGJ1-9E1WnTEjKMWYiUYs7qDSM7ZxOX9i4dD4LeD0LSEy0f-IKxhDU8uuX_2cvfszZlwfs2kIb18G3Y3S-D3OQ7UE9-BAG29wWGSO16_-baqhd_6up_1PYs8MPug26aXj6F-1j_0Q</recordid><startdate>20130409</startdate><enddate>20130409</enddate><creator>Debray, Thomas P A</creator><creator>Moons, Karel G M</creator><creator>Abo-Zaid, Ghada Mohammed Abdallah</creator><creator>Koffijberg, Hendrik</creator><creator>Riley, Richard David</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130409</creationdate><title>Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?</title><author>Debray, Thomas P A ; Moons, Karel G M ; Abo-Zaid, Ghada Mohammed Abdallah ; Koffijberg, Hendrik ; Riley, Richard David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-926aa4b2d3f7554a3d7eb023d490b85c3be78221fa4e5b691b52832fdac3dca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Data processing</topic><topic>Empirical analysis</topic><topic>Epidemiology</topic><topic>Erythema</topic><topic>Estimates</topic><topic>Generalized linear models</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Meta-analysis</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Normal distribution</topic><topic>Normality</topic><topic>Odds Ratio</topic><topic>Parameter estimation</topic><topic>Primary care</topic><topic>Public health</topic><topic>Regression Analysis</topic><topic>Risk analysis</topic><topic>Risk Factors</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Studies</topic><topic>Treatment Outcome</topic><topic>Venous Thrombosis - diagnosis</topic><topic>Venous Thrombosis - surgery</topic><topic>Venous Thrombosis - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debray, Thomas P A</creatorcontrib><creatorcontrib>Moons, Karel G M</creatorcontrib><creatorcontrib>Abo-Zaid, Ghada Mohammed Abdallah</creatorcontrib><creatorcontrib>Koffijberg, Hendrik</creatorcontrib><creatorcontrib>Riley, Richard David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debray, Thomas P A</au><au>Moons, Karel G M</au><au>Abo-Zaid, Ghada Mohammed Abdallah</au><au>Koffijberg, Hendrik</au><au>Riley, Richard David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-09</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e60650</spage><epage>e60650</epage><pages>e60650-e60650</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the results from multiple studies in individual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results, but empirical comparisons are few.
We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the methods in an empirical dataset for unadjusted and adjusted risk-factor estimates.
Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage (OR = 1.35, [Formula: see text]) and univariate two-stage (OR = 1.55, [Formula: see text]). Estimation issues can also arise: two-stage models suffer unstable estimates when zero cell counts occur and one-stage models do not always converge.
When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23585842</pmid><doi>10.1371/journal.pone.0060650</doi><tpages>e60650</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e60650-e60650 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330894975 |
source | Directory of Open Access Journals (DOAJ); Public Library of Science (PLoS) Journals Open Access; MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Algorithms Analysis Approximation Data processing Empirical analysis Epidemiology Erythema Estimates Generalized linear models Health sciences Humans Mathematical models Mathematics Medical prognosis Medical research Medicine Meta-analysis Methods Models, Statistical Multivariate analysis Normal distribution Normality Odds Ratio Parameter estimation Primary care Public health Regression Analysis Risk analysis Risk Factors Statistical analysis Statistics Studies Treatment Outcome Venous Thrombosis - diagnosis Venous Thrombosis - surgery Venous Thrombosis - therapy |
title | Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20participant%20data%20meta-analysis%20for%20a%20binary%20outcome:%20one-stage%20or%20two-stage?&rft.jtitle=PloS%20one&rft.au=Debray,%20Thomas%20P%20A&rft.date=2013-04-09&rft.volume=8&rft.issue=4&rft.spage=e60650&rft.epage=e60650&rft.pages=e60650-e60650&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0060650&rft_dat=%3Cgale_plos_%3EA478361147%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330894975&rft_id=info:pmid/23585842&rft_galeid=A478361147&rft_doaj_id=oai_doaj_org_article_86142c621bcb4bd8a27769c310a3903c&rfr_iscdi=true |