Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß
Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models hav...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e61125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e61125 |
container_title | PloS one |
container_volume | 8 |
creator | Chu, Isabel M Lai, Wei-Chu Aprelikova, Olga El Touny, Lara H Kouros-Mehr, Hosein Green, Jeffrey E |
description | Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor. |
doi_str_mv | 10.1371/journal.pone.0061125 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330893559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478387396</galeid><doaj_id>oai_doaj_org_article_c5e22d9e2de249ff8da10c465e453523</doaj_id><sourcerecordid>A478387396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</originalsourceid><addsrcrecordid>eNqNktFqFDEUhgdRbK2-gWhAELyYNZlMMpmbwlrbdaGloKu3IZuc2U2ZnaxJprZP48P4YqbutOyAguQi4eT7_xxO_ix7SfCE0Iq8v3K971Q72boOJhhzQgr2KDskNS1yXmD6eO98kD0L4QpjRgXnT7ODgrKqIjU_zMLpzdZDCNZ1yDVoNl1MKbIduvg4zS8-5AUlKHq7bSHvYKWivQa09KBCRFp1GjzS0LYhKUyvISCFVt79iOtUWNuljc7fomSfegyAokOL2dmvn8-zJ41qA7wY9qPs69np4uRTfn45m59Mz3PNqpLlDAvOaCG4FhVvzNLomjFeUiyEAKyIqRujl0ZRxmgtSA2C04Yz0xAQJQhCj7LXO99t64Ic5hUkocmiTqo6EfMdYZy6kltvN8rfSqes_FNwfiWVj1a3IDWDojA1FAaKsm4aYRTBuuQMSkZZQZPX8fBav9yA0dBFr9qR6fims2u5cteSph8iBCeDN4OBd997CPEfLQ_USqWubNe4ZKY3Nmg5LStBRUVrnqjJX6i0DGysTolpbKqPBO9GgsREuIkr1Ycg518-_z97-W3Mvt1j16DauA6u7WMKXBiD5Q7U3oXgoXmYHMHyLvD305B3gZdD4JPs1f7UH0T3Cae_AU8w-h8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330893559</pqid></control><display><type>article</type><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E</creator><contributor>Katz, Elad</contributor><creatorcontrib>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E ; Katz, Elad</creatorcontrib><description>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0061125</identifier><identifier>PMID: 23577196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Bone Morphogenetic Protein 5 - metabolism ; Bone morphogenetic proteins ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer ; Cancer metastasis ; Cancer therapies ; Cell adhesion & migration ; Cell cycle ; Cell Cycle - drug effects ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Combined treatment ; DNA microarrays ; Epithelial cells ; Epithelial-Mesenchymal Transition - drug effects ; GATA-3 protein ; GATA3 Transcription Factor - genetics ; GATA3 Transcription Factor - metabolism ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genomics ; Genotype & phenotype ; Growth ; Growth factors ; Humans ; Kinases ; Laboratories ; Medical research ; Medicine ; Mesenchyme ; Metastases ; Metastasis ; Phosphorylation ; Proteins ; Receptor, ErbB-2 - genetics ; Receptors, Estrogen - genetics ; Receptors, Progesterone - genetics ; Reduction ; Restoration ; Rodents ; Sensitivity analysis ; Signal Transduction - drug effects ; Stem cells ; Transcription factors ; Transcription, Genetic - drug effects ; Transforming growth factor ; Transforming Growth Factor beta - metabolism ; Transforming Growth Factor beta - pharmacology ; Transforming growth factors ; Tumor suppressor genes ; Tumorigenesis ; Xenografts</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e61125</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</citedby><cites>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620110/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620110/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23577196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Katz, Elad</contributor><creatorcontrib>Chu, Isabel M</creatorcontrib><creatorcontrib>Lai, Wei-Chu</creatorcontrib><creatorcontrib>Aprelikova, Olga</creatorcontrib><creatorcontrib>El Touny, Lara H</creatorcontrib><creatorcontrib>Kouros-Mehr, Hosein</creatorcontrib><creatorcontrib>Green, Jeffrey E</creatorcontrib><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</description><subject>Analysis</subject><subject>Biology</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Bone Morphogenetic Protein 5 - metabolism</subject><subject>Bone morphogenetic proteins</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cancer therapies</subject><subject>Cell adhesion & migration</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Combined treatment</subject><subject>DNA microarrays</subject><subject>Epithelial cells</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>GATA-3 protein</subject><subject>GATA3 Transcription Factor - genetics</subject><subject>GATA3 Transcription Factor - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Growth</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Receptors, Estrogen - genetics</subject><subject>Receptors, Progesterone - genetics</subject><subject>Reduction</subject><subject>Restoration</subject><subject>Rodents</subject><subject>Sensitivity analysis</subject><subject>Signal Transduction - drug effects</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transforming growth factor</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transforming growth factors</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Xenografts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktFqFDEUhgdRbK2-gWhAELyYNZlMMpmbwlrbdaGloKu3IZuc2U2ZnaxJprZP48P4YqbutOyAguQi4eT7_xxO_ix7SfCE0Iq8v3K971Q72boOJhhzQgr2KDskNS1yXmD6eO98kD0L4QpjRgXnT7ODgrKqIjU_zMLpzdZDCNZ1yDVoNl1MKbIduvg4zS8-5AUlKHq7bSHvYKWivQa09KBCRFp1GjzS0LYhKUyvISCFVt79iOtUWNuljc7fomSfegyAokOL2dmvn8-zJ41qA7wY9qPs69np4uRTfn45m59Mz3PNqpLlDAvOaCG4FhVvzNLomjFeUiyEAKyIqRujl0ZRxmgtSA2C04Yz0xAQJQhCj7LXO99t64Ic5hUkocmiTqo6EfMdYZy6kltvN8rfSqes_FNwfiWVj1a3IDWDojA1FAaKsm4aYRTBuuQMSkZZQZPX8fBav9yA0dBFr9qR6fims2u5cteSph8iBCeDN4OBd997CPEfLQ_USqWubNe4ZKY3Nmg5LStBRUVrnqjJX6i0DGysTolpbKqPBO9GgsREuIkr1Ycg518-_z97-W3Mvt1j16DauA6u7WMKXBiD5Q7U3oXgoXmYHMHyLvD305B3gZdD4JPs1f7UH0T3Cae_AU8w-h8</recordid><startdate>20130408</startdate><enddate>20130408</enddate><creator>Chu, Isabel M</creator><creator>Lai, Wei-Chu</creator><creator>Aprelikova, Olga</creator><creator>El Touny, Lara H</creator><creator>Kouros-Mehr, Hosein</creator><creator>Green, Jeffrey E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130408</creationdate><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><author>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Biology</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Bone Morphogenetic Protein 5 - metabolism</topic><topic>Bone morphogenetic proteins</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cancer therapies</topic><topic>Cell adhesion & migration</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Combined treatment</topic><topic>DNA microarrays</topic><topic>Epithelial cells</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>GATA-3 protein</topic><topic>GATA3 Transcription Factor - genetics</topic><topic>GATA3 Transcription Factor - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Growth</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Receptors, Estrogen - genetics</topic><topic>Receptors, Progesterone - genetics</topic><topic>Reduction</topic><topic>Restoration</topic><topic>Rodents</topic><topic>Sensitivity analysis</topic><topic>Signal Transduction - drug effects</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transforming growth factor</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transforming growth factors</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Isabel M</creatorcontrib><creatorcontrib>Lai, Wei-Chu</creatorcontrib><creatorcontrib>Aprelikova, Olga</creatorcontrib><creatorcontrib>El Touny, Lara H</creatorcontrib><creatorcontrib>Kouros-Mehr, Hosein</creatorcontrib><creatorcontrib>Green, Jeffrey E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Isabel M</au><au>Lai, Wei-Chu</au><au>Aprelikova, Olga</au><au>El Touny, Lara H</au><au>Kouros-Mehr, Hosein</au><au>Green, Jeffrey E</au><au>Katz, Elad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-08</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e61125</spage><pages>e61125-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23577196</pmid><doi>10.1371/journal.pone.0061125</doi><tpages>e61125</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e61125 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330893559 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Biology Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Bone Morphogenetic Protein 5 - metabolism Bone morphogenetic proteins Breast cancer Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer Cancer metastasis Cancer therapies Cell adhesion & migration Cell cycle Cell Cycle - drug effects Cell Line, Tumor Cell Proliferation - drug effects Combined treatment DNA microarrays Epithelial cells Epithelial-Mesenchymal Transition - drug effects GATA-3 protein GATA3 Transcription Factor - genetics GATA3 Transcription Factor - metabolism Gene expression Gene Expression Regulation, Neoplastic - drug effects Genomics Genotype & phenotype Growth Growth factors Humans Kinases Laboratories Medical research Medicine Mesenchyme Metastases Metastasis Phosphorylation Proteins Receptor, ErbB-2 - genetics Receptors, Estrogen - genetics Receptors, Progesterone - genetics Reduction Restoration Rodents Sensitivity analysis Signal Transduction - drug effects Stem cells Transcription factors Transcription, Genetic - drug effects Transforming growth factor Transforming Growth Factor beta - metabolism Transforming Growth Factor beta - pharmacology Transforming growth factors Tumor suppressor genes Tumorigenesis Xenografts |
title | Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20GATA3%20in%20MDA-MB-231%20triple-negative%20breast%20cancer%20cells%20induces%20a%20growth%20inhibitory%20response%20to%20TGF%C3%9F&rft.jtitle=PloS%20one&rft.au=Chu,%20Isabel%20M&rft.date=2013-04-08&rft.volume=8&rft.issue=4&rft.spage=e61125&rft.pages=e61125-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0061125&rft_dat=%3Cgale_plos_%3EA478387396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330893559&rft_id=info:pmid/23577196&rft_galeid=A478387396&rft_doaj_id=oai_doaj_org_article_c5e22d9e2de249ff8da10c465e453523&rfr_iscdi=true |