Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß

Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e61125
Hauptverfasser: Chu, Isabel M, Lai, Wei-Chu, Aprelikova, Olga, El Touny, Lara H, Kouros-Mehr, Hosein, Green, Jeffrey E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e61125
container_title PloS one
container_volume 8
creator Chu, Isabel M
Lai, Wei-Chu
Aprelikova, Olga
El Touny, Lara H
Kouros-Mehr, Hosein
Green, Jeffrey E
description Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.
doi_str_mv 10.1371/journal.pone.0061125
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330893559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478387396</galeid><doaj_id>oai_doaj_org_article_c5e22d9e2de249ff8da10c465e453523</doaj_id><sourcerecordid>A478387396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</originalsourceid><addsrcrecordid>eNqNktFqFDEUhgdRbK2-gWhAELyYNZlMMpmbwlrbdaGloKu3IZuc2U2ZnaxJprZP48P4YqbutOyAguQi4eT7_xxO_ix7SfCE0Iq8v3K971Q72boOJhhzQgr2KDskNS1yXmD6eO98kD0L4QpjRgXnT7ODgrKqIjU_zMLpzdZDCNZ1yDVoNl1MKbIduvg4zS8-5AUlKHq7bSHvYKWivQa09KBCRFp1GjzS0LYhKUyvISCFVt79iOtUWNuljc7fomSfegyAokOL2dmvn8-zJ41qA7wY9qPs69np4uRTfn45m59Mz3PNqpLlDAvOaCG4FhVvzNLomjFeUiyEAKyIqRujl0ZRxmgtSA2C04Yz0xAQJQhCj7LXO99t64Ic5hUkocmiTqo6EfMdYZy6kltvN8rfSqes_FNwfiWVj1a3IDWDojA1FAaKsm4aYRTBuuQMSkZZQZPX8fBav9yA0dBFr9qR6fims2u5cteSph8iBCeDN4OBd997CPEfLQ_USqWubNe4ZKY3Nmg5LStBRUVrnqjJX6i0DGysTolpbKqPBO9GgsREuIkr1Ycg518-_z97-W3Mvt1j16DauA6u7WMKXBiD5Q7U3oXgoXmYHMHyLvD305B3gZdD4JPs1f7UH0T3Cae_AU8w-h8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330893559</pqid></control><display><type>article</type><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E</creator><contributor>Katz, Elad</contributor><creatorcontrib>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E ; Katz, Elad</creatorcontrib><description>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0061125</identifier><identifier>PMID: 23577196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Bone Morphogenetic Protein 5 - metabolism ; Bone morphogenetic proteins ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer ; Cancer metastasis ; Cancer therapies ; Cell adhesion &amp; migration ; Cell cycle ; Cell Cycle - drug effects ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Combined treatment ; DNA microarrays ; Epithelial cells ; Epithelial-Mesenchymal Transition - drug effects ; GATA-3 protein ; GATA3 Transcription Factor - genetics ; GATA3 Transcription Factor - metabolism ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genomics ; Genotype &amp; phenotype ; Growth ; Growth factors ; Humans ; Kinases ; Laboratories ; Medical research ; Medicine ; Mesenchyme ; Metastases ; Metastasis ; Phosphorylation ; Proteins ; Receptor, ErbB-2 - genetics ; Receptors, Estrogen - genetics ; Receptors, Progesterone - genetics ; Reduction ; Restoration ; Rodents ; Sensitivity analysis ; Signal Transduction - drug effects ; Stem cells ; Transcription factors ; Transcription, Genetic - drug effects ; Transforming growth factor ; Transforming Growth Factor beta - metabolism ; Transforming Growth Factor beta - pharmacology ; Transforming growth factors ; Tumor suppressor genes ; Tumorigenesis ; Xenografts</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e61125</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</citedby><cites>FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620110/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620110/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23577196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Katz, Elad</contributor><creatorcontrib>Chu, Isabel M</creatorcontrib><creatorcontrib>Lai, Wei-Chu</creatorcontrib><creatorcontrib>Aprelikova, Olga</creatorcontrib><creatorcontrib>El Touny, Lara H</creatorcontrib><creatorcontrib>Kouros-Mehr, Hosein</creatorcontrib><creatorcontrib>Green, Jeffrey E</creatorcontrib><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</description><subject>Analysis</subject><subject>Biology</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Bone Morphogenetic Protein 5 - metabolism</subject><subject>Bone morphogenetic proteins</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cancer therapies</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Combined treatment</subject><subject>DNA microarrays</subject><subject>Epithelial cells</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>GATA-3 protein</subject><subject>GATA3 Transcription Factor - genetics</subject><subject>GATA3 Transcription Factor - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Growth</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Receptors, Estrogen - genetics</subject><subject>Receptors, Progesterone - genetics</subject><subject>Reduction</subject><subject>Restoration</subject><subject>Rodents</subject><subject>Sensitivity analysis</subject><subject>Signal Transduction - drug effects</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transforming growth factor</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transforming growth factors</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Xenografts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktFqFDEUhgdRbK2-gWhAELyYNZlMMpmbwlrbdaGloKu3IZuc2U2ZnaxJprZP48P4YqbutOyAguQi4eT7_xxO_ix7SfCE0Iq8v3K971Q72boOJhhzQgr2KDskNS1yXmD6eO98kD0L4QpjRgXnT7ODgrKqIjU_zMLpzdZDCNZ1yDVoNl1MKbIduvg4zS8-5AUlKHq7bSHvYKWivQa09KBCRFp1GjzS0LYhKUyvISCFVt79iOtUWNuljc7fomSfegyAokOL2dmvn8-zJ41qA7wY9qPs69np4uRTfn45m59Mz3PNqpLlDAvOaCG4FhVvzNLomjFeUiyEAKyIqRujl0ZRxmgtSA2C04Yz0xAQJQhCj7LXO99t64Ic5hUkocmiTqo6EfMdYZy6kltvN8rfSqes_FNwfiWVj1a3IDWDojA1FAaKsm4aYRTBuuQMSkZZQZPX8fBav9yA0dBFr9qR6fims2u5cteSph8iBCeDN4OBd997CPEfLQ_USqWubNe4ZKY3Nmg5LStBRUVrnqjJX6i0DGysTolpbKqPBO9GgsREuIkr1Ycg518-_z97-W3Mvt1j16DauA6u7WMKXBiD5Q7U3oXgoXmYHMHyLvD305B3gZdD4JPs1f7UH0T3Cae_AU8w-h8</recordid><startdate>20130408</startdate><enddate>20130408</enddate><creator>Chu, Isabel M</creator><creator>Lai, Wei-Chu</creator><creator>Aprelikova, Olga</creator><creator>El Touny, Lara H</creator><creator>Kouros-Mehr, Hosein</creator><creator>Green, Jeffrey E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130408</creationdate><title>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</title><author>Chu, Isabel M ; Lai, Wei-Chu ; Aprelikova, Olga ; El Touny, Lara H ; Kouros-Mehr, Hosein ; Green, Jeffrey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5745-508653286c876fdbdc9556430888e0a1d9fdcbda35539819e863f65df1e84e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Biology</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Bone Morphogenetic Protein 5 - metabolism</topic><topic>Bone morphogenetic proteins</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cancer therapies</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Combined treatment</topic><topic>DNA microarrays</topic><topic>Epithelial cells</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>GATA-3 protein</topic><topic>GATA3 Transcription Factor - genetics</topic><topic>GATA3 Transcription Factor - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Growth</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Receptors, Estrogen - genetics</topic><topic>Receptors, Progesterone - genetics</topic><topic>Reduction</topic><topic>Restoration</topic><topic>Rodents</topic><topic>Sensitivity analysis</topic><topic>Signal Transduction - drug effects</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transforming growth factor</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transforming growth factors</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Isabel M</creatorcontrib><creatorcontrib>Lai, Wei-Chu</creatorcontrib><creatorcontrib>Aprelikova, Olga</creatorcontrib><creatorcontrib>El Touny, Lara H</creatorcontrib><creatorcontrib>Kouros-Mehr, Hosein</creatorcontrib><creatorcontrib>Green, Jeffrey E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Isabel M</au><au>Lai, Wei-Chu</au><au>Aprelikova, Olga</au><au>El Touny, Lara H</au><au>Kouros-Mehr, Hosein</au><au>Green, Jeffrey E</au><au>Katz, Elad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-08</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e61125</spage><pages>e61125-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Transforming growth factor (ß1TGFß1) can promote proliferation in late stage cancers but acts as a tumor suppressor in normal epithelial cells and in early stage cancers. Although, the TGFß pathway has been shown to play a key role in tumorigenesis and metastasis, only a limited number of models have been developed to understand this process. Here, we present a novel model system to discern this paradoxical role of TGFß1 using the MDA-MB-231 (MB-231) cell line. The MB-231 triple-negative breast cancer cell line has been extensively characterized and has been shown to continue to proliferate and undergo epithelial-to-mesenchymal transition (EMT) upon TGFß1 stimulation. We have previously shown by microarray analysis that expression of GATA3 in MB-231 cells results in reprogramming of these cells from a basal to a luminal subtype associated with a reduction of metastasis and tumorigenesis when implanted as xenografts. We now demonstrate that GATA3 overexpression in these cells results in a reduction of TGFß1 response, reversal of EMT, and most importantly, restoration of sensitivity to the inhibitory effects on proliferation of TGFß1. Microarray analysis revealed that TGFß1 treatment resulted in reduction of several cell cycle effectors in 231-GATA3 cells but not in control cells. Furthermore, our microarray analysis revealed a significant increase of BMP5 in 231-GATA3 cells. We demonstrate that combined treatment of MB-231 control cells with TGFß1 and BMP5 results in a significant reduction of cellular proliferation. Thus, this model offers a means to further investigate potentially novel mechanisms involved in the switch in response to TGFß1 from tumor promoter to tumor suppressor through the reprogramming of a triple-negative breast cancer cell line by the GATA3 transcription factor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23577196</pmid><doi>10.1371/journal.pone.0061125</doi><tpages>e61125</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e61125
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330893559
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Biology
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Bone Morphogenetic Protein 5 - metabolism
Bone morphogenetic proteins
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Cancer
Cancer metastasis
Cancer therapies
Cell adhesion & migration
Cell cycle
Cell Cycle - drug effects
Cell Line, Tumor
Cell Proliferation - drug effects
Combined treatment
DNA microarrays
Epithelial cells
Epithelial-Mesenchymal Transition - drug effects
GATA-3 protein
GATA3 Transcription Factor - genetics
GATA3 Transcription Factor - metabolism
Gene expression
Gene Expression Regulation, Neoplastic - drug effects
Genomics
Genotype & phenotype
Growth
Growth factors
Humans
Kinases
Laboratories
Medical research
Medicine
Mesenchyme
Metastases
Metastasis
Phosphorylation
Proteins
Receptor, ErbB-2 - genetics
Receptors, Estrogen - genetics
Receptors, Progesterone - genetics
Reduction
Restoration
Rodents
Sensitivity analysis
Signal Transduction - drug effects
Stem cells
Transcription factors
Transcription, Genetic - drug effects
Transforming growth factor
Transforming Growth Factor beta - metabolism
Transforming Growth Factor beta - pharmacology
Transforming growth factors
Tumor suppressor genes
Tumorigenesis
Xenografts
title Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20GATA3%20in%20MDA-MB-231%20triple-negative%20breast%20cancer%20cells%20induces%20a%20growth%20inhibitory%20response%20to%20TGF%C3%9F&rft.jtitle=PloS%20one&rft.au=Chu,%20Isabel%20M&rft.date=2013-04-08&rft.volume=8&rft.issue=4&rft.spage=e61125&rft.pages=e61125-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0061125&rft_dat=%3Cgale_plos_%3EA478387396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330893559&rft_id=info:pmid/23577196&rft_galeid=A478387396&rft_doaj_id=oai_doaj_org_article_c5e22d9e2de249ff8da10c465e453523&rfr_iscdi=true