Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling

Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire camp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-03, Vol.8 (3), p.e59252-e59252
Hauptverfasser: Reinhardt, Peter, Glatza, Michael, Hemmer, Kathrin, Tsytsyura, Yaroslav, Thiel, Cora S, Höing, Susanne, Moritz, Sören, Parga, Juan A, Wagner, Lydia, Bruder, Jan M, Wu, Guangming, Schmid, Benjamin, Röpke, Albrecht, Klingauf, Jürgen, Schwamborn, Jens C, Gasser, Thomas, Schöler, Hans R, Sterneckert, Jared
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e59252
container_issue 3
container_start_page e59252
container_title PloS one
container_volume 8
creator Reinhardt, Peter
Glatza, Michael
Hemmer, Kathrin
Tsytsyura, Yaroslav
Thiel, Cora S
Höing, Susanne
Moritz, Sören
Parga, Juan A
Wagner, Lydia
Bruder, Jan M
Wu, Guangming
Schmid, Benjamin
Röpke, Albrecht
Klingauf, Jürgen
Schwamborn, Jens C
Gasser, Thomas
Schöler, Hans R
Sterneckert, Jared
description Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
doi_str_mv 10.1371/journal.pone.0059252
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330891353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478165624</galeid><doaj_id>oai_doaj_org_article_bcf377472b314ec3a52975813cafd0a1</doaj_id><sourcerecordid>A478165624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c809t-ea884f525849691d060105b9b897071e597683ba2c1221b2026333ab7d0eaec3</originalsourceid><addsrcrecordid>eNqNk0tr3DAQgE1padJt_0FpDYXSHnarh2XZl0JIXwuBQBt6FWN7vKsgS1vJXpJ_XznrhHXJofhga_zNJ2mkSZLXlKwol_TTtRu8BbPaOYsrQkTJBHuSnNKSs2XOCH969H2SvAjhOkK8yPPnyQnjgvOcFKfJ_gt6vYdeO5uCbVK82YEN42gI2m5SZ81tGjowJu2cwXowGFLXptuhA5taHDyYdOfdBq3unQ9p6_xd2DUYY-ijeo9powNCwOho0ETvy-RZCybgq-m9SK6-fb06_7G8uPy-Pj-7WNYFKfslQlFkrWCiyMq8pA3JCSWiKquilERSFKXMC14BqyljtGKE5ZxzqGRDELDmi-TtQbszLqipYkFRzklR0rEIi2R9IBoH12rndQf-VjnQ6i7g_EaB73VtUFV1y6XMJKs4zaIcBCulKCivoW0I0Oj6PM02VB02Ndo-Vmcmnf-xeqs2bq_iUeSZLKPgwyTw7s-AoVedDjUaAxbdMK6bxaWLTMiIvvsHfXx3E7WBuAFtWxfnrUepOstkQXORsyxSq0eo-DTY6Tper1bH-Czh4ywhMj3e9BsYQlDrXz__n738PWffH7FbBNNvgzPDeDvDHMwOYO1dCB7bhyJTosbuuK-GGrtDTd0R094cH9BD0n078L9Pfwsd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330891353</pqid></control><display><type>article</type><title>Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Reinhardt, Peter ; Glatza, Michael ; Hemmer, Kathrin ; Tsytsyura, Yaroslav ; Thiel, Cora S ; Höing, Susanne ; Moritz, Sören ; Parga, Juan A ; Wagner, Lydia ; Bruder, Jan M ; Wu, Guangming ; Schmid, Benjamin ; Röpke, Albrecht ; Klingauf, Jürgen ; Schwamborn, Jens C ; Gasser, Thomas ; Schöler, Hans R ; Sterneckert, Jared</creator><contributor>Daadi, Marcel</contributor><creatorcontrib>Reinhardt, Peter ; Glatza, Michael ; Hemmer, Kathrin ; Tsytsyura, Yaroslav ; Thiel, Cora S ; Höing, Susanne ; Moritz, Sören ; Parga, Juan A ; Wagner, Lydia ; Bruder, Jan M ; Wu, Guangming ; Schmid, Benjamin ; Röpke, Albrecht ; Klingauf, Jürgen ; Schwamborn, Jens C ; Gasser, Thomas ; Schöler, Hans R ; Sterneckert, Jared ; Daadi, Marcel</creatorcontrib><description>Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0059252</identifier><identifier>PMID: 23533608</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amyotrophic lateral sclerosis ; Analysis ; Apoptosis ; Biological properties ; Biology ; Biophysics ; Brain research ; Cell culture ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cells (biology) ; Cells, Cultured ; Derivation ; Developmental biology ; Disease ; Dopamine receptors ; Drug discovery ; Electrophysiology ; Embryos ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Health physics ; Health screening ; High-throughput screening ; Humans ; Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 ; LRRK2 protein ; Medicine ; Mesencephalon ; Mesenchyme ; Modelling ; Molecular biology ; Motor neurons ; Motor Neurons - cytology ; Motor Neurons - metabolism ; Mutation ; Nervous system diseases ; Neural crest ; Neural Crest - cytology ; Neural Crest - metabolism ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural tube ; Neurodegenerative Diseases - genetics ; Neurodegenerative Diseases - metabolism ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neuroprotection ; Oxidative stress ; Pathogenesis ; Physics ; Pluripotency ; Progenitor cells ; Propagation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Screening ; Stem cells</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e59252-e59252</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Reinhardt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Reinhardt et al 2013 Reinhardt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c809t-ea884f525849691d060105b9b897071e597683ba2c1221b2026333ab7d0eaec3</citedby><cites>FETCH-LOGICAL-c809t-ea884f525849691d060105b9b897071e597683ba2c1221b2026333ab7d0eaec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23533608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Daadi, Marcel</contributor><creatorcontrib>Reinhardt, Peter</creatorcontrib><creatorcontrib>Glatza, Michael</creatorcontrib><creatorcontrib>Hemmer, Kathrin</creatorcontrib><creatorcontrib>Tsytsyura, Yaroslav</creatorcontrib><creatorcontrib>Thiel, Cora S</creatorcontrib><creatorcontrib>Höing, Susanne</creatorcontrib><creatorcontrib>Moritz, Sören</creatorcontrib><creatorcontrib>Parga, Juan A</creatorcontrib><creatorcontrib>Wagner, Lydia</creatorcontrib><creatorcontrib>Bruder, Jan M</creatorcontrib><creatorcontrib>Wu, Guangming</creatorcontrib><creatorcontrib>Schmid, Benjamin</creatorcontrib><creatorcontrib>Röpke, Albrecht</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Schwamborn, Jens C</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Sterneckert, Jared</creatorcontrib><title>Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biological properties</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cells (biology)</subject><subject>Cells, Cultured</subject><subject>Derivation</subject><subject>Developmental biology</subject><subject>Disease</subject><subject>Dopamine receptors</subject><subject>Drug discovery</subject><subject>Electrophysiology</subject><subject>Embryos</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Health physics</subject><subject>Health screening</subject><subject>High-throughput screening</subject><subject>Humans</subject><subject>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</subject><subject>LRRK2 protein</subject><subject>Medicine</subject><subject>Mesencephalon</subject><subject>Mesenchyme</subject><subject>Modelling</subject><subject>Molecular biology</subject><subject>Motor neurons</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - metabolism</subject><subject>Mutation</subject><subject>Nervous system diseases</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - metabolism</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural tube</subject><subject>Neurodegenerative Diseases - genetics</subject><subject>Neurodegenerative Diseases - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neuroprotection</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Physics</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Propagation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Screening</subject><subject>Stem cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQgE1padJt_0FpDYXSHnarh2XZl0JIXwuBQBt6FWN7vKsgS1vJXpJ_XznrhHXJofhga_zNJ2mkSZLXlKwol_TTtRu8BbPaOYsrQkTJBHuSnNKSs2XOCH969H2SvAjhOkK8yPPnyQnjgvOcFKfJ_gt6vYdeO5uCbVK82YEN42gI2m5SZ81tGjowJu2cwXowGFLXptuhA5taHDyYdOfdBq3unQ9p6_xd2DUYY-ijeo9powNCwOho0ETvy-RZCybgq-m9SK6-fb06_7G8uPy-Pj-7WNYFKfslQlFkrWCiyMq8pA3JCSWiKquilERSFKXMC14BqyljtGKE5ZxzqGRDELDmi-TtQbszLqipYkFRzklR0rEIi2R9IBoH12rndQf-VjnQ6i7g_EaB73VtUFV1y6XMJKs4zaIcBCulKCivoW0I0Oj6PM02VB02Ndo-Vmcmnf-xeqs2bq_iUeSZLKPgwyTw7s-AoVedDjUaAxbdMK6bxaWLTMiIvvsHfXx3E7WBuAFtWxfnrUepOstkQXORsyxSq0eo-DTY6Tper1bH-Czh4ywhMj3e9BsYQlDrXz__n738PWffH7FbBNNvgzPDeDvDHMwOYO1dCB7bhyJTosbuuK-GGrtDTd0R094cH9BD0n078L9Pfwsd</recordid><startdate>20130322</startdate><enddate>20130322</enddate><creator>Reinhardt, Peter</creator><creator>Glatza, Michael</creator><creator>Hemmer, Kathrin</creator><creator>Tsytsyura, Yaroslav</creator><creator>Thiel, Cora S</creator><creator>Höing, Susanne</creator><creator>Moritz, Sören</creator><creator>Parga, Juan A</creator><creator>Wagner, Lydia</creator><creator>Bruder, Jan M</creator><creator>Wu, Guangming</creator><creator>Schmid, Benjamin</creator><creator>Röpke, Albrecht</creator><creator>Klingauf, Jürgen</creator><creator>Schwamborn, Jens C</creator><creator>Gasser, Thomas</creator><creator>Schöler, Hans R</creator><creator>Sterneckert, Jared</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130322</creationdate><title>Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling</title><author>Reinhardt, Peter ; Glatza, Michael ; Hemmer, Kathrin ; Tsytsyura, Yaroslav ; Thiel, Cora S ; Höing, Susanne ; Moritz, Sören ; Parga, Juan A ; Wagner, Lydia ; Bruder, Jan M ; Wu, Guangming ; Schmid, Benjamin ; Röpke, Albrecht ; Klingauf, Jürgen ; Schwamborn, Jens C ; Gasser, Thomas ; Schöler, Hans R ; Sterneckert, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c809t-ea884f525849691d060105b9b897071e597683ba2c1221b2026333ab7d0eaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biological properties</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cells (biology)</topic><topic>Cells, Cultured</topic><topic>Derivation</topic><topic>Developmental biology</topic><topic>Disease</topic><topic>Dopamine receptors</topic><topic>Drug discovery</topic><topic>Electrophysiology</topic><topic>Embryos</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Health physics</topic><topic>Health screening</topic><topic>High-throughput screening</topic><topic>Humans</topic><topic>Leucine-Rich Repeat Serine-Threonine Protein Kinase-2</topic><topic>LRRK2 protein</topic><topic>Medicine</topic><topic>Mesencephalon</topic><topic>Mesenchyme</topic><topic>Modelling</topic><topic>Molecular biology</topic><topic>Motor neurons</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - metabolism</topic><topic>Mutation</topic><topic>Nervous system diseases</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - metabolism</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural tube</topic><topic>Neurodegenerative Diseases - genetics</topic><topic>Neurodegenerative Diseases - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neuroprotection</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Physics</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Propagation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Screening</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinhardt, Peter</creatorcontrib><creatorcontrib>Glatza, Michael</creatorcontrib><creatorcontrib>Hemmer, Kathrin</creatorcontrib><creatorcontrib>Tsytsyura, Yaroslav</creatorcontrib><creatorcontrib>Thiel, Cora S</creatorcontrib><creatorcontrib>Höing, Susanne</creatorcontrib><creatorcontrib>Moritz, Sören</creatorcontrib><creatorcontrib>Parga, Juan A</creatorcontrib><creatorcontrib>Wagner, Lydia</creatorcontrib><creatorcontrib>Bruder, Jan M</creatorcontrib><creatorcontrib>Wu, Guangming</creatorcontrib><creatorcontrib>Schmid, Benjamin</creatorcontrib><creatorcontrib>Röpke, Albrecht</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Schwamborn, Jens C</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Schöler, Hans R</creatorcontrib><creatorcontrib>Sterneckert, Jared</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinhardt, Peter</au><au>Glatza, Michael</au><au>Hemmer, Kathrin</au><au>Tsytsyura, Yaroslav</au><au>Thiel, Cora S</au><au>Höing, Susanne</au><au>Moritz, Sören</au><au>Parga, Juan A</au><au>Wagner, Lydia</au><au>Bruder, Jan M</au><au>Wu, Guangming</au><au>Schmid, Benjamin</au><au>Röpke, Albrecht</au><au>Klingauf, Jürgen</au><au>Schwamborn, Jens C</au><au>Gasser, Thomas</au><au>Schöler, Hans R</au><au>Sterneckert, Jared</au><au>Daadi, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-22</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e59252</spage><epage>e59252</epage><pages>e59252-e59252</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23533608</pmid><doi>10.1371/journal.pone.0059252</doi><tpages>e59252</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-03, Vol.8 (3), p.e59252-e59252
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330891353
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amyotrophic lateral sclerosis
Analysis
Apoptosis
Biological properties
Biology
Biophysics
Brain research
Cell culture
Cell Differentiation - genetics
Cell Differentiation - physiology
Cells (biology)
Cells, Cultured
Derivation
Developmental biology
Disease
Dopamine receptors
Drug discovery
Electrophysiology
Embryos
Epithelial Cells - cytology
Epithelial Cells - metabolism
Health physics
Health screening
High-throughput screening
Humans
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
LRRK2 protein
Medicine
Mesencephalon
Mesenchyme
Modelling
Molecular biology
Motor neurons
Motor Neurons - cytology
Motor Neurons - metabolism
Mutation
Nervous system diseases
Neural crest
Neural Crest - cytology
Neural Crest - metabolism
Neural stem cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neural tube
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - metabolism
Neurons
Neurons - cytology
Neurons - metabolism
Neuroprotection
Oxidative stress
Pathogenesis
Physics
Pluripotency
Progenitor cells
Propagation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Screening
Stem cells
title Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20expansion%20using%20only%20small%20molecules%20of%20human%20neural%20progenitors%20for%20neurodegenerative%20disease%20modeling&rft.jtitle=PloS%20one&rft.au=Reinhardt,%20Peter&rft.date=2013-03-22&rft.volume=8&rft.issue=3&rft.spage=e59252&rft.epage=e59252&rft.pages=e59252-e59252&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0059252&rft_dat=%3Cgale_plos_%3EA478165624%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330891353&rft_id=info:pmid/23533608&rft_galeid=A478165624&rft_doaj_id=oai_doaj_org_article_bcf377472b314ec3a52975813cafd0a1&rfr_iscdi=true