Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery

Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-03, Vol.7 (3), p.e32841
Hauptverfasser: Russo, Ilaria, Luciani, Alessandro, De Cicco, Paola, Troncone, Edoardo, Ciacci, Carolina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e32841
container_title PloS one
container_volume 7
creator Russo, Ilaria
Luciani, Alessandro
De Cicco, Paola
Troncone, Edoardo
Ciacci, Carolina
description Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.
doi_str_mv 10.1371/journal.pone.0032841
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330885813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477150115</galeid><doaj_id>oai_doaj_org_article_5dbdc326e77c440dab070a6f4a8faa64</doaj_id><sourcerecordid>A477150115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-ed74556833b611dc791c2951626af397aabe3de136aac1b432ba19fec0d7ed943</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3rn6DUQLguKLXZOmTds3wrn4sHBw4NPbME2m2xxpsyap3H4RP69Zt3dsQUFamGn6-0-m_2aS5CklK8pK-ubajm4As9rZAVeEsKzK6b3knNYsW_KMsPsn-VnyyPtrQgpWcf4wOcuynGY1o-fJr3dj2DsImEIIOIwx86nRO7uzZu9Byg6cVrjUgxolqlQPrYG-h6DtEB_iHQVBx0ZSicb4FAaVrp3thlc-7UdpPaShc3bcdmlv1WiOSttGMGY3WsWYKmxx8Jj2IDs9oNs_Th60YDw-meIi-fbh_df1p-Xl1cfN-uJyKXlNwxJVmRcFrxhrOKVKljWVWV1QnnFoWV0CNMgUUsYBJG1yljVA6xYlUSWqOmeL5Pmx7s5YLyZLvaCMkaoqqhgXyeZIKAvXYud0D24vLGjxZ8G6rQAXtDQoCtUoyTKOZSnznChoSEmAtzlULQA_7PZ22m1selQSh-DAzIrO3wy6E1v7U7D4UWV1KPBiKuDsjzEa_4-WJ2oLsav4x2wsJnvtpbjIy5IWhNIiUqu_UPFS2GsZD1Wr4_pM8HomiEzAm7CF0Xux-fL5_9mr73P25QnbIZjQeWvGw0HxczA_gtJZ7x22d85RIg4zceuGOMyEmGYiyp6dun4nuh0C9hvXnAvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330885813</pqid></control><display><type>article</type><title>Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Russo, Ilaria ; Luciani, Alessandro ; De Cicco, Paola ; Troncone, Edoardo ; Ciacci, Carolina</creator><contributor>Bereswill, Stefan</contributor><creatorcontrib>Russo, Ilaria ; Luciani, Alessandro ; De Cicco, Paola ; Troncone, Edoardo ; Ciacci, Carolina ; Bereswill, Stefan</creatorcontrib><description>Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0032841</identifier><identifier>PMID: 22412931</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adolescent ; Adult ; Antioxidants ; Antioxidants (Nutrients) ; Antioxidants - metabolism ; Biology ; Butyrates - pharmacology ; Catalysis ; Catalysis - drug effects ; Catalytic activity ; Cell Line ; Colon ; Confocal microscopy ; Crohn Disease - immunology ; Crohn Disease - pathology ; Crohn's Disease ; Crohns disease ; Cyclooxygenase-2 ; E coli ; Enzyme Activation - drug effects ; Epithelial cells ; Escherichia coli ; Esters ; Gastroenterology ; Gastrointestinal diseases ; Gene expression ; Gene Expression - drug effects ; Glutathione Transferase - genetics ; Humans ; Immune system ; Inflammation ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory response ; Intercellular adhesion molecule 1 ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - immunology ; Intestinal Mucosa - pathology ; Intestine ; Intracellular ; Isoenzymes - genetics ; Kinases ; Lamina propria ; Leukocytes (mononuclear) ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Machinery and equipment ; MAP kinase ; Medicine ; Metabolism ; Microscopy ; Mitogens ; Mucosa ; NF-kappa B - metabolism ; NF-κB protein ; Oxidation-Reduction ; Oxidative Stress ; Oxygen ; Pathogenesis ; Patients ; Phosphorylation ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA ; RNA, Messenger - metabolism ; Rodents ; Studies ; Young Adult</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e32841</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Russo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Russo et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-ed74556833b611dc791c2951626af397aabe3de136aac1b432ba19fec0d7ed943</citedby><cites>FETCH-LOGICAL-c691t-ed74556833b611dc791c2951626af397aabe3de136aac1b432ba19fec0d7ed943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22412931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bereswill, Stefan</contributor><creatorcontrib>Russo, Ilaria</creatorcontrib><creatorcontrib>Luciani, Alessandro</creatorcontrib><creatorcontrib>De Cicco, Paola</creatorcontrib><creatorcontrib>Troncone, Edoardo</creatorcontrib><creatorcontrib>Ciacci, Carolina</creatorcontrib><title>Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.</description><subject>Activation</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Antioxidants</subject><subject>Antioxidants (Nutrients)</subject><subject>Antioxidants - metabolism</subject><subject>Biology</subject><subject>Butyrates - pharmacology</subject><subject>Catalysis</subject><subject>Catalysis - drug effects</subject><subject>Catalytic activity</subject><subject>Cell Line</subject><subject>Colon</subject><subject>Confocal microscopy</subject><subject>Crohn Disease - immunology</subject><subject>Crohn Disease - pathology</subject><subject>Crohn's Disease</subject><subject>Crohns disease</subject><subject>Cyclooxygenase-2</subject><subject>E coli</subject><subject>Enzyme Activation - drug effects</subject><subject>Epithelial cells</subject><subject>Escherichia coli</subject><subject>Esters</subject><subject>Gastroenterology</subject><subject>Gastrointestinal diseases</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Glutathione Transferase - genetics</subject><subject>Humans</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory response</subject><subject>Intercellular adhesion molecule 1</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - immunology</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestine</subject><subject>Intracellular</subject><subject>Isoenzymes - genetics</subject><subject>Kinases</subject><subject>Lamina propria</subject><subject>Leukocytes (mononuclear)</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Machinery and equipment</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Mitogens</subject><subject>Mucosa</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Oxygen</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Studies</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3rn6DUQLguKLXZOmTds3wrn4sHBw4NPbME2m2xxpsyap3H4RP69Zt3dsQUFamGn6-0-m_2aS5CklK8pK-ubajm4As9rZAVeEsKzK6b3knNYsW_KMsPsn-VnyyPtrQgpWcf4wOcuynGY1o-fJr3dj2DsImEIIOIwx86nRO7uzZu9Byg6cVrjUgxolqlQPrYG-h6DtEB_iHQVBx0ZSicb4FAaVrp3thlc-7UdpPaShc3bcdmlv1WiOSttGMGY3WsWYKmxx8Jj2IDs9oNs_Th60YDw-meIi-fbh_df1p-Xl1cfN-uJyKXlNwxJVmRcFrxhrOKVKljWVWV1QnnFoWV0CNMgUUsYBJG1yljVA6xYlUSWqOmeL5Pmx7s5YLyZLvaCMkaoqqhgXyeZIKAvXYud0D24vLGjxZ8G6rQAXtDQoCtUoyTKOZSnznChoSEmAtzlULQA_7PZ22m1selQSh-DAzIrO3wy6E1v7U7D4UWV1KPBiKuDsjzEa_4-WJ2oLsav4x2wsJnvtpbjIy5IWhNIiUqu_UPFS2GsZD1Wr4_pM8HomiEzAm7CF0Xux-fL5_9mr73P25QnbIZjQeWvGw0HxczA_gtJZ7x22d85RIg4zceuGOMyEmGYiyp6dun4nuh0C9hvXnAvU</recordid><startdate>20120306</startdate><enddate>20120306</enddate><creator>Russo, Ilaria</creator><creator>Luciani, Alessandro</creator><creator>De Cicco, Paola</creator><creator>Troncone, Edoardo</creator><creator>Ciacci, Carolina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120306</creationdate><title>Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery</title><author>Russo, Ilaria ; Luciani, Alessandro ; De Cicco, Paola ; Troncone, Edoardo ; Ciacci, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-ed74556833b611dc791c2951626af397aabe3de136aac1b432ba19fec0d7ed943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Antioxidants</topic><topic>Antioxidants (Nutrients)</topic><topic>Antioxidants - metabolism</topic><topic>Biology</topic><topic>Butyrates - pharmacology</topic><topic>Catalysis</topic><topic>Catalysis - drug effects</topic><topic>Catalytic activity</topic><topic>Cell Line</topic><topic>Colon</topic><topic>Confocal microscopy</topic><topic>Crohn Disease - immunology</topic><topic>Crohn Disease - pathology</topic><topic>Crohn's Disease</topic><topic>Crohns disease</topic><topic>Cyclooxygenase-2</topic><topic>E coli</topic><topic>Enzyme Activation - drug effects</topic><topic>Epithelial cells</topic><topic>Escherichia coli</topic><topic>Esters</topic><topic>Gastroenterology</topic><topic>Gastrointestinal diseases</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Glutathione Transferase - genetics</topic><topic>Humans</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory response</topic><topic>Intercellular adhesion molecule 1</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - immunology</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestine</topic><topic>Intracellular</topic><topic>Isoenzymes - genetics</topic><topic>Kinases</topic><topic>Lamina propria</topic><topic>Leukocytes (mononuclear)</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Machinery and equipment</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Mitogens</topic><topic>Mucosa</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Oxygen</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Ilaria</creatorcontrib><creatorcontrib>Luciani, Alessandro</creatorcontrib><creatorcontrib>De Cicco, Paola</creatorcontrib><creatorcontrib>Troncone, Edoardo</creatorcontrib><creatorcontrib>Ciacci, Carolina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, Ilaria</au><au>Luciani, Alessandro</au><au>De Cicco, Paola</au><au>Troncone, Edoardo</au><au>Ciacci, Carolina</au><au>Bereswill, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-06</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e32841</spage><pages>e32841-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22412931</pmid><doi>10.1371/journal.pone.0032841</doi><tpages>e32841</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-03, Vol.7 (3), p.e32841
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330885813
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Adolescent
Adult
Antioxidants
Antioxidants (Nutrients)
Antioxidants - metabolism
Biology
Butyrates - pharmacology
Catalysis
Catalysis - drug effects
Catalytic activity
Cell Line
Colon
Confocal microscopy
Crohn Disease - immunology
Crohn Disease - pathology
Crohn's Disease
Crohns disease
Cyclooxygenase-2
E coli
Enzyme Activation - drug effects
Epithelial cells
Escherichia coli
Esters
Gastroenterology
Gastrointestinal diseases
Gene expression
Gene Expression - drug effects
Glutathione Transferase - genetics
Humans
Immune system
Inflammation
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory response
Intercellular adhesion molecule 1
Intestinal Mucosa - drug effects
Intestinal Mucosa - immunology
Intestinal Mucosa - pathology
Intestine
Intracellular
Isoenzymes - genetics
Kinases
Lamina propria
Leukocytes (mononuclear)
Lipopolysaccharides
Lipopolysaccharides - immunology
Machinery and equipment
MAP kinase
Medicine
Metabolism
Microscopy
Mitogens
Mucosa
NF-kappa B - metabolism
NF-κB protein
Oxidation-Reduction
Oxidative Stress
Oxygen
Pathogenesis
Patients
Phosphorylation
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA
RNA, Messenger - metabolism
Rodents
Studies
Young Adult
title Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Butyrate%20attenuates%20lipopolysaccharide-induced%20inflammation%20in%20intestinal%20cells%20and%20Crohn's%20mucosa%20through%20modulation%20of%20antioxidant%20defense%20machinery&rft.jtitle=PloS%20one&rft.au=Russo,%20Ilaria&rft.date=2012-03-06&rft.volume=7&rft.issue=3&rft.spage=e32841&rft.pages=e32841-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0032841&rft_dat=%3Cgale_plos_%3EA477150115%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330885813&rft_id=info:pmid/22412931&rft_galeid=A477150115&rft_doaj_id=oai_doaj_org_article_5dbdc326e77c440dab070a6f4a8faa64&rfr_iscdi=true