Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a mult...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-02, Vol.8 (2), p.e57407-e57407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e57407 |
---|---|
container_issue | 2 |
container_start_page | e57407 |
container_title | PloS one |
container_volume | 8 |
creator | Starosta, Sarah Güntürkün, Onur Stüttgen, Maik C |
description | A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S-) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments. |
doi_str_mv | 10.1371/journal.pone.0057407 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330883449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478203944</galeid><doaj_id>oai_doaj_org_article_c1f083da8111434583a460ad5ea25858</doaj_id><sourcerecordid>A478203944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d359df15efc8b9ae43ee6d9f45c4ee151e9efec4a72415fd26282d8534bad3473</originalsourceid><addsrcrecordid>eNqNktFqFDEUhgdRbF19A9EBoejFrMkkmWRuhFLULhQKVr0N2eTMbJbMZDvJiH17s-607EgvJBdJTr7zn-Tkz7LXGC0x4fjj1o9Dr9xy53tYIsQ4RfxJdoprUhZVicjTo_VJ9iKEbYKIqKrn2UlJKOFEkNPs8ibabnRjKAYISSpA4ceofQe59sb2bW77PG4g39kWfJ_31vidcs6OXa7VaLxTEQbl4GX2rFEuwKtpXmQ_vnz-fnFZXF1_XV2cXxW6qstYGMJq02AGjRbrWgElAJWpG8o0BcAMQw0NaKp4STFrTFmVojSCEbpWhlBOFtnbg-7O-SCnJgSJCUFCEErrRKwOhPFqK3eD7dRwJ72y8m_AD61UQ7TagdS4QYIYJTDGlFAmiKIVUoaBKplI20X2aao2rjswGvqYHjsTnZ_0diNb_0sSxjlHJAm8nwQGfztCiLKzQYNzqgc_7u-Ny4rxUqCEvvsHffx1E9WmpkvbNz7V1XtReU65SJ9dU5qo5SNUGgY6q5NjGpvis4QPs4TERPgdWzWGIFc33_6fvf45Z8-O2A0oFzfBuzHa5LU5SA-gHnwIAzQPTcZI7g1_3w25N7ycDJ_S3hx_0EPSvcPJH5IG-xE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330883449</pqid></control><display><type>article</type><title>Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Starosta, Sarah ; Güntürkün, Onur ; Stüttgen, Maik C</creator><contributor>Bingman, Verner Peter</contributor><creatorcontrib>Starosta, Sarah ; Güntürkün, Onur ; Stüttgen, Maik C ; Bingman, Verner Peter</creatorcontrib><description>A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S-) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0057407</identifier><identifier>PMID: 23437383</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal behavior ; Animals ; Behavior ; Behavior, Animal ; Biology ; Birds ; Changing environments ; Coding ; Columbidae - physiology ; Conditioning, Operant - physiology ; Cues ; Decision making ; Discrimination Learning - physiology ; Environmental changes ; Evoked Potentials - physiology ; Expectancy ; Food ; Forebrain ; Frequency dependence ; Go/no-go discrimination learning ; Microelectrodes ; Neural coding ; Neuromodulation ; Neurons ; Neurons - physiology ; Photic Stimulation ; Pigeons ; Predictions ; Prefrontal cortex ; Prefrontal Cortex - anatomy & histology ; Prefrontal Cortex - physiology ; Psychobiology ; Psychology ; Reaction Time ; Reinforcement ; Reward ; Social and Behavioral Sciences ; Stereotaxic Techniques ; Studies ; Trends ; Visual cortex ; Visual discrimination ; Visual stimuli</subject><ispartof>PloS one, 2013-02, Vol.8 (2), p.e57407-e57407</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Starosta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Starosta et al 2013 Starosta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d359df15efc8b9ae43ee6d9f45c4ee151e9efec4a72415fd26282d8534bad3473</citedby><cites>FETCH-LOGICAL-c692t-d359df15efc8b9ae43ee6d9f45c4ee151e9efec4a72415fd26282d8534bad3473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577703/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577703/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23437383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bingman, Verner Peter</contributor><creatorcontrib>Starosta, Sarah</creatorcontrib><creatorcontrib>Güntürkün, Onur</creatorcontrib><creatorcontrib>Stüttgen, Maik C</creatorcontrib><title>Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S-) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior, Animal</subject><subject>Biology</subject><subject>Birds</subject><subject>Changing environments</subject><subject>Coding</subject><subject>Columbidae - physiology</subject><subject>Conditioning, Operant - physiology</subject><subject>Cues</subject><subject>Decision making</subject><subject>Discrimination Learning - physiology</subject><subject>Environmental changes</subject><subject>Evoked Potentials - physiology</subject><subject>Expectancy</subject><subject>Food</subject><subject>Forebrain</subject><subject>Frequency dependence</subject><subject>Go/no-go discrimination learning</subject><subject>Microelectrodes</subject><subject>Neural coding</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation</subject><subject>Pigeons</subject><subject>Predictions</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - anatomy & histology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Psychobiology</subject><subject>Psychology</subject><subject>Reaction Time</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Social and Behavioral Sciences</subject><subject>Stereotaxic Techniques</subject><subject>Studies</subject><subject>Trends</subject><subject>Visual cortex</subject><subject>Visual discrimination</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktFqFDEUhgdRbF19A9EBoejFrMkkmWRuhFLULhQKVr0N2eTMbJbMZDvJiH17s-607EgvJBdJTr7zn-Tkz7LXGC0x4fjj1o9Dr9xy53tYIsQ4RfxJdoprUhZVicjTo_VJ9iKEbYKIqKrn2UlJKOFEkNPs8ibabnRjKAYISSpA4ceofQe59sb2bW77PG4g39kWfJ_31vidcs6OXa7VaLxTEQbl4GX2rFEuwKtpXmQ_vnz-fnFZXF1_XV2cXxW6qstYGMJq02AGjRbrWgElAJWpG8o0BcAMQw0NaKp4STFrTFmVojSCEbpWhlBOFtnbg-7O-SCnJgSJCUFCEErrRKwOhPFqK3eD7dRwJ72y8m_AD61UQ7TagdS4QYIYJTDGlFAmiKIVUoaBKplI20X2aao2rjswGvqYHjsTnZ_0diNb_0sSxjlHJAm8nwQGfztCiLKzQYNzqgc_7u-Ny4rxUqCEvvsHffx1E9WmpkvbNz7V1XtReU65SJ9dU5qo5SNUGgY6q5NjGpvis4QPs4TERPgdWzWGIFc33_6fvf45Z8-O2A0oFzfBuzHa5LU5SA-gHnwIAzQPTcZI7g1_3w25N7ycDJ_S3hx_0EPSvcPJH5IG-xE</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Starosta, Sarah</creator><creator>Güntürkün, Onur</creator><creator>Stüttgen, Maik C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130220</creationdate><title>Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale</title><author>Starosta, Sarah ; Güntürkün, Onur ; Stüttgen, Maik C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d359df15efc8b9ae43ee6d9f45c4ee151e9efec4a72415fd26282d8534bad3473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior, Animal</topic><topic>Biology</topic><topic>Birds</topic><topic>Changing environments</topic><topic>Coding</topic><topic>Columbidae - physiology</topic><topic>Conditioning, Operant - physiology</topic><topic>Cues</topic><topic>Decision making</topic><topic>Discrimination Learning - physiology</topic><topic>Environmental changes</topic><topic>Evoked Potentials - physiology</topic><topic>Expectancy</topic><topic>Food</topic><topic>Forebrain</topic><topic>Frequency dependence</topic><topic>Go/no-go discrimination learning</topic><topic>Microelectrodes</topic><topic>Neural coding</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation</topic><topic>Pigeons</topic><topic>Predictions</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - anatomy & histology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Psychobiology</topic><topic>Psychology</topic><topic>Reaction Time</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Social and Behavioral Sciences</topic><topic>Stereotaxic Techniques</topic><topic>Studies</topic><topic>Trends</topic><topic>Visual cortex</topic><topic>Visual discrimination</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starosta, Sarah</creatorcontrib><creatorcontrib>Güntürkün, Onur</creatorcontrib><creatorcontrib>Stüttgen, Maik C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starosta, Sarah</au><au>Güntürkün, Onur</au><au>Stüttgen, Maik C</au><au>Bingman, Verner Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-02-20</date><risdate>2013</risdate><volume>8</volume><issue>2</issue><spage>e57407</spage><epage>e57407</epage><pages>e57407-e57407</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S-) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23437383</pmid><doi>10.1371/journal.pone.0057407</doi><tpages>e57407</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-02, Vol.8 (2), p.e57407-e57407 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330883449 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal behavior Animals Behavior Behavior, Animal Biology Birds Changing environments Coding Columbidae - physiology Conditioning, Operant - physiology Cues Decision making Discrimination Learning - physiology Environmental changes Evoked Potentials - physiology Expectancy Food Forebrain Frequency dependence Go/no-go discrimination learning Microelectrodes Neural coding Neuromodulation Neurons Neurons - physiology Photic Stimulation Pigeons Predictions Prefrontal cortex Prefrontal Cortex - anatomy & histology Prefrontal Cortex - physiology Psychobiology Psychology Reaction Time Reinforcement Reward Social and Behavioral Sciences Stereotaxic Techniques Studies Trends Visual cortex Visual discrimination Visual stimuli |
title | Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulus-response-outcome%20coding%20in%20the%20pigeon%20nidopallium%20caudolaterale&rft.jtitle=PloS%20one&rft.au=Starosta,%20Sarah&rft.date=2013-02-20&rft.volume=8&rft.issue=2&rft.spage=e57407&rft.epage=e57407&rft.pages=e57407-e57407&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0057407&rft_dat=%3Cgale_plos_%3EA478203944%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330883449&rft_id=info:pmid/23437383&rft_galeid=A478203944&rft_doaj_id=oai_doaj_org_article_c1f083da8111434583a460ad5ea25858&rfr_iscdi=true |