Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling
Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell funct...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-04, Vol.7 (4), p.e36200 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e36200 |
container_title | PloS one |
container_volume | 7 |
creator | Amyot, Julie Semache, Meriem Ferdaoussi, Mourad Fontés, Ghislaine Poitout, Vincent |
description | Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets.
A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function. |
doi_str_mv | 10.1371/journal.pone.0036200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1330881852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4fca53491b24b87a5b75d5722832f8e</doaj_id><sourcerecordid>2949750901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e618137fca269bcdd29fa97c1a1de71f67ad2a861fd97ad73d1bf7db8c258e573</originalsourceid><addsrcrecordid>eNp1UsFu1DAQjRCIlsIfILDEOUtsrxPngkQrCpUikFA5WxN7kvXitYOdreiVz-Ij-CZcNq3aAyc_zcx782y_onhJqxXlDX27Dfvowa2m4HFVVbxmVfWoOKYtZ2XG_PE9fFQ8S2lbVYLLun5aHDEmhOSSHhe_OjuFKbjrBFpvIFqDidjdBDYS69PeWU9G9Ejw5xQxJRt8rhObgoMZTQYO50TCQDrwI8YN-ESuLJDL4FzZ2e9IvqLGaQ6xXBPwhnw-L__8PiXJjtl9lh-fF08GcAlfLOdJ8e38w-XZp7L78vHi7H1XasHqucSaynzxQQOr214bw9oB2kZToAYbOtQNGAaypoNpM2y4of3QmF5qJiSKhp8Urw-6kwtJLc-XFOW8kpJKwfLExWHCBNiqKdodxGsVwKp_hRBHBXG22qEa1tmI4OuW9mzdywZE3wgjGsYkZ4PErPVu2bbvd2g0-jmCeyD6sOPtRo3hSnGeP6mqs8CbRSCGH3tM838srw9TOoaUIg53G2ilbnJyy1I3OVFLTjLt1X13d6TbYPC_0X-_dA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330881852</pqid></control><display><type>article</type><title>Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling</title><source>Electronic Journals Library</source><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Amyot, Julie ; Semache, Meriem ; Ferdaoussi, Mourad ; Fontés, Ghislaine ; Poitout, Vincent</creator><creatorcontrib>Amyot, Julie ; Semache, Meriem ; Ferdaoussi, Mourad ; Fontés, Ghislaine ; Poitout, Vincent</creatorcontrib><description>Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets.
A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036200</identifier><identifier>PMID: 22558381</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipocytes ; Animals ; Apoptosis ; Beta cells ; Biochemistry ; Biology ; Cell Line ; Diabetes ; Diabetes mellitus ; Duodenum ; Exposure ; Extracellular matrix ; Fatty acids ; Gene expression ; Gene Expression Regulation - drug effects ; Glucose ; Homeodomain Proteins - metabolism ; Homeostasis ; Homology ; Humans ; Hypotheses ; Immune system ; In Vitro Techniques ; Inflammation ; Inhibition ; Insulin ; Insulin - genetics ; Insulin - metabolism ; Insulin resistance ; Insulin Secretion ; Intestinal microflora ; Islets of Langerhans ; Islets of Langerhans - cytology ; Islets of Langerhans - drug effects ; Islets of Langerhans - metabolism ; Kinases ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Male ; MAP kinase ; Medicine ; Metabolism ; Mice ; Microbiota ; Molecular modelling ; NF-kappa B - antagonists & inhibitors ; NF-kappa B - metabolism ; NF-κB protein ; Obesity ; Pancreas ; Pattern recognition ; Protein kinase ; Proteins ; Rats ; RNA Precursors - genetics ; RNA Precursors - metabolism ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; TLR4 protein ; Toll-Like Receptor 4 - deficiency ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; Trans-Activators - metabolism</subject><ispartof>PloS one, 2012-04, Vol.7 (4), p.e36200</ispartof><rights>2012 Amyot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Amyot et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e618137fca269bcdd29fa97c1a1de71f67ad2a861fd97ad73d1bf7db8c258e573</citedby><cites>FETCH-LOGICAL-c526t-e618137fca269bcdd29fa97c1a1de71f67ad2a861fd97ad73d1bf7db8c258e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338606/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338606/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22558381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amyot, Julie</creatorcontrib><creatorcontrib>Semache, Meriem</creatorcontrib><creatorcontrib>Ferdaoussi, Mourad</creatorcontrib><creatorcontrib>Fontés, Ghislaine</creatorcontrib><creatorcontrib>Poitout, Vincent</creatorcontrib><title>Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets.
A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.</description><subject>Adipocytes</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Beta cells</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Cell Line</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Duodenum</subject><subject>Exposure</subject><subject>Extracellular matrix</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glucose</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Immune system</subject><subject>In Vitro Techniques</subject><subject>Inflammation</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Insulin Secretion</subject><subject>Intestinal microflora</subject><subject>Islets of Langerhans</subject><subject>Islets of Langerhans - cytology</subject><subject>Islets of Langerhans - drug effects</subject><subject>Islets of Langerhans - metabolism</subject><subject>Kinases</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Molecular modelling</subject><subject>NF-kappa B - antagonists & inhibitors</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Obesity</subject><subject>Pancreas</subject><subject>Pattern recognition</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Rats</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - deficiency</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>Trans-Activators - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UsFu1DAQjRCIlsIfILDEOUtsrxPngkQrCpUikFA5WxN7kvXitYOdreiVz-Ij-CZcNq3aAyc_zcx782y_onhJqxXlDX27Dfvowa2m4HFVVbxmVfWoOKYtZ2XG_PE9fFQ8S2lbVYLLun5aHDEmhOSSHhe_OjuFKbjrBFpvIFqDidjdBDYS69PeWU9G9Ejw5xQxJRt8rhObgoMZTQYO50TCQDrwI8YN-ESuLJDL4FzZ2e9IvqLGaQ6xXBPwhnw-L__8PiXJjtl9lh-fF08GcAlfLOdJ8e38w-XZp7L78vHi7H1XasHqucSaynzxQQOr214bw9oB2kZToAYbOtQNGAaypoNpM2y4of3QmF5qJiSKhp8Urw-6kwtJLc-XFOW8kpJKwfLExWHCBNiqKdodxGsVwKp_hRBHBXG22qEa1tmI4OuW9mzdywZE3wgjGsYkZ4PErPVu2bbvd2g0-jmCeyD6sOPtRo3hSnGeP6mqs8CbRSCGH3tM838srw9TOoaUIg53G2ilbnJyy1I3OVFLTjLt1X13d6TbYPC_0X-_dA</recordid><startdate>20120427</startdate><enddate>20120427</enddate><creator>Amyot, Julie</creator><creator>Semache, Meriem</creator><creator>Ferdaoussi, Mourad</creator><creator>Fontés, Ghislaine</creator><creator>Poitout, Vincent</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120427</creationdate><title>Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling</title><author>Amyot, Julie ; Semache, Meriem ; Ferdaoussi, Mourad ; Fontés, Ghislaine ; Poitout, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e618137fca269bcdd29fa97c1a1de71f67ad2a861fd97ad73d1bf7db8c258e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adipocytes</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Beta cells</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Cell Line</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Duodenum</topic><topic>Exposure</topic><topic>Extracellular matrix</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glucose</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Immune system</topic><topic>In Vitro Techniques</topic><topic>Inflammation</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Insulin Secretion</topic><topic>Intestinal microflora</topic><topic>Islets of Langerhans</topic><topic>Islets of Langerhans - cytology</topic><topic>Islets of Langerhans - drug effects</topic><topic>Islets of Langerhans - metabolism</topic><topic>Kinases</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Molecular modelling</topic><topic>NF-kappa B - antagonists & inhibitors</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Obesity</topic><topic>Pancreas</topic><topic>Pattern recognition</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Rats</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - deficiency</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>Trans-Activators - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amyot, Julie</creatorcontrib><creatorcontrib>Semache, Meriem</creatorcontrib><creatorcontrib>Ferdaoussi, Mourad</creatorcontrib><creatorcontrib>Fontés, Ghislaine</creatorcontrib><creatorcontrib>Poitout, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amyot, Julie</au><au>Semache, Meriem</au><au>Ferdaoussi, Mourad</au><au>Fontés, Ghislaine</au><au>Poitout, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-04-27</date><risdate>2012</risdate><volume>7</volume><issue>4</issue><spage>e36200</spage><pages>e36200-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets.
A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22558381</pmid><doi>10.1371/journal.pone.0036200</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-04, Vol.7 (4), p.e36200 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330881852 |
source | Electronic Journals Library; PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adipocytes Animals Apoptosis Beta cells Biochemistry Biology Cell Line Diabetes Diabetes mellitus Duodenum Exposure Extracellular matrix Fatty acids Gene expression Gene Expression Regulation - drug effects Glucose Homeodomain Proteins - metabolism Homeostasis Homology Humans Hypotheses Immune system In Vitro Techniques Inflammation Inhibition Insulin Insulin - genetics Insulin - metabolism Insulin resistance Insulin Secretion Intestinal microflora Islets of Langerhans Islets of Langerhans - cytology Islets of Langerhans - drug effects Islets of Langerhans - metabolism Kinases Lipopolysaccharides Lipopolysaccharides - pharmacology Male MAP kinase Medicine Metabolism Mice Microbiota Molecular modelling NF-kappa B - antagonists & inhibitors NF-kappa B - metabolism NF-κB protein Obesity Pancreas Pattern recognition Protein kinase Proteins Rats RNA Precursors - genetics RNA Precursors - metabolism Rodents Signal transduction Signal Transduction - drug effects Signaling TLR4 protein Toll-Like Receptor 4 - deficiency Toll-Like Receptor 4 - metabolism Toll-like receptors Trans-Activators - metabolism |
title | Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipopolysaccharides%20impair%20insulin%20gene%20expression%20in%20isolated%20islets%20of%20Langerhans%20via%20Toll-Like%20Receptor-4%20and%20NF-%CE%BAB%20signalling&rft.jtitle=PloS%20one&rft.au=Amyot,%20Julie&rft.date=2012-04-27&rft.volume=7&rft.issue=4&rft.spage=e36200&rft.pages=e36200-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036200&rft_dat=%3Cproquest_plos_%3E2949750901%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330881852&rft_id=info:pmid/22558381&rft_doaj_id=oai_doaj_org_article_f4fca53491b24b87a5b75d5722832f8e&rfr_iscdi=true |