Exploring the morphospace of communication efficiency in complex networks
Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-03, Vol.8 (3), p.e58070-e58070 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e58070 |
---|---|
container_issue | 3 |
container_start_page | e58070 |
container_title | PloS one |
container_volume | 8 |
creator | Goñi, Joaquín Avena-Koenigsberger, Andrea Velez de Mendizabal, Nieves van den Heuvel, Martijn P Betzel, Richard F Sporns, Olaf |
description | Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing"), we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion"). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology. |
doi_str_mv | 10.1371/journal.pone.0058070 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330881616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478394009</galeid><doaj_id>oai_doaj_org_article_1841b5d9cf07421d9e5518715a6751ad</doaj_id><sourcerecordid>A478394009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4e77c07c17732977f7dd7afed2a8dbd9ec7c74cd1340234d039069f5503746733</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjEmTNO2NsCyrDiws-HUbMsnJTMY2qUmrs__e1OkuU9kLyUVCznPek3PyZtlzjJaYcPxu54fgZLPsvIMlQqxCHD3ITnFNikVZIPLw6HySPYlxlyBSleXj7KQgDDHK2Gm2utx3jQ_WbfJ-C3nrQ7f1sZMKcm9y5dt2cFbJ3nqXgzFWWXDqJrdujHUN7HMH_W8ffsSn2SMjmwjPpv0s-_bh8uvFp8XV9cfVxfnVQpV10S8ocK4QV5hzUtScG641lwZ0ISu91jUorjhVGhOKCkI1IjUqa8MYIpyWnJCz7OVBN707imkKUWBCUFXhEpeJWB0I7eVOdMG2MtwIL634e-HDRsjQW9WAwBXFa6ZrZRCnBU7lGcMVx0yWnGGpk9b7qdqwbkErcH2QzUx0HnF2Kzb-lyCsxpTRJPBmEgj-5wCxF62NCppGOvDD-G7MK1YyViX01T_o_d1N1EamBqwzPtVVo6g4p7wiNUWoTtTyHiotDa1VyTLGpvtZwttZQmJ62PcbOcQoVl8-_z97_X3Ovj5ityCbfht9M4yOinOQHkAVfIwBzN2QMRKj42-nIUbHi8nxKe3F8QfdJd1anPwBoEv6Kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330881616</pqid></control><display><type>article</type><title>Exploring the morphospace of communication efficiency in complex networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Goñi, Joaquín ; Avena-Koenigsberger, Andrea ; Velez de Mendizabal, Nieves ; van den Heuvel, Martijn P ; Betzel, Richard F ; Sporns, Olaf</creator><creatorcontrib>Goñi, Joaquín ; Avena-Koenigsberger, Andrea ; Velez de Mendizabal, Nieves ; van den Heuvel, Martijn P ; Betzel, Richard F ; Sporns, Olaf</creatorcontrib><description>Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing"), we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion"). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0058070</identifier><identifier>PMID: 23505455</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology ; Brain ; Communication ; Computer Simulation ; Diffusion ; Diffusion processes ; Efficiency ; Food chains ; Food webs ; Mathematics ; Models, Theoretical ; Multiple objective analysis ; Network topologies ; Networks ; Neural networks ; Optimization ; Physics ; Probability ; Protein interaction ; Random walk ; Routing ; Social and Behavioral Sciences ; Social aspects ; Social networks ; Theoretical analysis ; Topology</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e58070-e58070</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Goni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Goni et al 2013 Goni et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4e77c07c17732977f7dd7afed2a8dbd9ec7c74cd1340234d039069f5503746733</citedby><cites>FETCH-LOGICAL-c692t-4e77c07c17732977f7dd7afed2a8dbd9ec7c74cd1340234d039069f5503746733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591454/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591454/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23505455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goñi, Joaquín</creatorcontrib><creatorcontrib>Avena-Koenigsberger, Andrea</creatorcontrib><creatorcontrib>Velez de Mendizabal, Nieves</creatorcontrib><creatorcontrib>van den Heuvel, Martijn P</creatorcontrib><creatorcontrib>Betzel, Richard F</creatorcontrib><creatorcontrib>Sporns, Olaf</creatorcontrib><title>Exploring the morphospace of communication efficiency in complex networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing"), we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion"). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology</subject><subject>Brain</subject><subject>Communication</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Diffusion processes</subject><subject>Efficiency</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Multiple objective analysis</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physics</subject><subject>Probability</subject><subject>Protein interaction</subject><subject>Random walk</subject><subject>Routing</subject><subject>Social and Behavioral Sciences</subject><subject>Social aspects</subject><subject>Social networks</subject><subject>Theoretical analysis</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjEmTNO2NsCyrDiws-HUbMsnJTMY2qUmrs__e1OkuU9kLyUVCznPek3PyZtlzjJaYcPxu54fgZLPsvIMlQqxCHD3ITnFNikVZIPLw6HySPYlxlyBSleXj7KQgDDHK2Gm2utx3jQ_WbfJ-C3nrQ7f1sZMKcm9y5dt2cFbJ3nqXgzFWWXDqJrdujHUN7HMH_W8ffsSn2SMjmwjPpv0s-_bh8uvFp8XV9cfVxfnVQpV10S8ocK4QV5hzUtScG641lwZ0ISu91jUorjhVGhOKCkI1IjUqa8MYIpyWnJCz7OVBN707imkKUWBCUFXhEpeJWB0I7eVOdMG2MtwIL634e-HDRsjQW9WAwBXFa6ZrZRCnBU7lGcMVx0yWnGGpk9b7qdqwbkErcH2QzUx0HnF2Kzb-lyCsxpTRJPBmEgj-5wCxF62NCppGOvDD-G7MK1YyViX01T_o_d1N1EamBqwzPtVVo6g4p7wiNUWoTtTyHiotDa1VyTLGpvtZwttZQmJ62PcbOcQoVl8-_z97_X3Ovj5ityCbfht9M4yOinOQHkAVfIwBzN2QMRKj42-nIUbHi8nxKe3F8QfdJd1anPwBoEv6Kg</recordid><startdate>20130307</startdate><enddate>20130307</enddate><creator>Goñi, Joaquín</creator><creator>Avena-Koenigsberger, Andrea</creator><creator>Velez de Mendizabal, Nieves</creator><creator>van den Heuvel, Martijn P</creator><creator>Betzel, Richard F</creator><creator>Sporns, Olaf</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130307</creationdate><title>Exploring the morphospace of communication efficiency in complex networks</title><author>Goñi, Joaquín ; Avena-Koenigsberger, Andrea ; Velez de Mendizabal, Nieves ; van den Heuvel, Martijn P ; Betzel, Richard F ; Sporns, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4e77c07c17732977f7dd7afed2a8dbd9ec7c74cd1340234d039069f5503746733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology</topic><topic>Brain</topic><topic>Communication</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Diffusion processes</topic><topic>Efficiency</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Multiple objective analysis</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physics</topic><topic>Probability</topic><topic>Protein interaction</topic><topic>Random walk</topic><topic>Routing</topic><topic>Social and Behavioral Sciences</topic><topic>Social aspects</topic><topic>Social networks</topic><topic>Theoretical analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goñi, Joaquín</creatorcontrib><creatorcontrib>Avena-Koenigsberger, Andrea</creatorcontrib><creatorcontrib>Velez de Mendizabal, Nieves</creatorcontrib><creatorcontrib>van den Heuvel, Martijn P</creatorcontrib><creatorcontrib>Betzel, Richard F</creatorcontrib><creatorcontrib>Sporns, Olaf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goñi, Joaquín</au><au>Avena-Koenigsberger, Andrea</au><au>Velez de Mendizabal, Nieves</au><au>van den Heuvel, Martijn P</au><au>Betzel, Richard F</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the morphospace of communication efficiency in complex networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-07</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e58070</spage><epage>e58070</epage><pages>e58070-e58070</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing"), we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion"). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23505455</pmid><doi>10.1371/journal.pone.0058070</doi><tpages>e58070</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-03, Vol.8 (3), p.e58070-e58070 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1330881616 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Biology Brain Communication Computer Simulation Diffusion Diffusion processes Efficiency Food chains Food webs Mathematics Models, Theoretical Multiple objective analysis Network topologies Networks Neural networks Optimization Physics Probability Protein interaction Random walk Routing Social and Behavioral Sciences Social aspects Social networks Theoretical analysis Topology |
title | Exploring the morphospace of communication efficiency in complex networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20morphospace%20of%20communication%20efficiency%20in%20complex%20networks&rft.jtitle=PloS%20one&rft.au=Go%C3%B1i,%20Joaqu%C3%ADn&rft.date=2013-03-07&rft.volume=8&rft.issue=3&rft.spage=e58070&rft.epage=e58070&rft.pages=e58070-e58070&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0058070&rft_dat=%3Cgale_plos_%3EA478394009%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330881616&rft_id=info:pmid/23505455&rft_galeid=A478394009&rft_doaj_id=oai_doaj_org_article_1841b5d9cf07421d9e5518715a6751ad&rfr_iscdi=true |