Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum

This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-03, Vol.8 (3), p.e58259
Hauptverfasser: Pfeiffer, Verena, Götz, Rudolf, Xiang, Chaomei, Camarero, Guadelupe, Braun, Attila, Zhang, Yina, Blum, Robert, Heinsen, Helmut, Nieswandt, Bernhard, Rapp, Ulf R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e58259
container_title PloS one
container_volume 8
creator Pfeiffer, Verena
Götz, Rudolf
Xiang, Chaomei
Camarero, Guadelupe
Braun, Attila
Zhang, Yina
Blum, Robert
Heinsen, Helmut
Nieswandt, Bernhard
Rapp, Ulf R
description This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.
doi_str_mv 10.1371/journal.pone.0058259
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330881257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478394005</galeid><doaj_id>oai_doaj_org_article_454c7540f6d349cd8d2ff16a7f2fce01</doaj_id><sourcerecordid>A478394005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-5fcba90e35156b78fb7fb04b2bdc2b24e83dea57b856483ab3611ceab77c123e3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7u7oPxAtCAtezJjPJr0RxsWPgYWF9eNOQpImMxnapiap6L8343SXKShILhKS57zn8OYtimcQrCBm8PXej6GX7WrwvVkBQDmi9YPiHNYYLSsE8MOT81lxEeM-Q5hX1ePiDGEKKGH4vPi2Vq1Mzvelt-XbW2lL1w3ShVj2Zgw-NygbZ60Jpk_uCLq-TDtTDj6mXqYM7NwweC27YYyl7JtSZ1qZth27J8UjK9tonk77ovjy_t3nq4_L65sPm6v19VIzytOSWq1kDQymkFaKcauYVYAopBqNFCKG48ZIyhSnFeFYKlxBqI1UjGmIsMGL4sVRd2h9FJMzUUCMAecQUZaJzZFovNyLIbhOhl_CSyf-XPiwFTIkp1sjCCV5LAJs1WBS64Y3yFpYSWaR1QbArPVm6jaqzjQ6WxNkOxOdv_RuJ7b-h8C0hgTjLPByEgj--2hi-sfIE7WVeSrXW5_FdOeiFmvCOK7J4UMXxeovVF6N6ZzO2bAu388KXs0KMpPMz7SVY4xi8-n2_9mbr3P28oTdGdmmXfTteMhMnIPkCOrgYwzG3jsHgThE-84NcYi2mKKdy56fun5fdJdl_Bu5EPVa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330881257</pqid></control><display><type>article</type><title>Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pfeiffer, Verena ; Götz, Rudolf ; Xiang, Chaomei ; Camarero, Guadelupe ; Braun, Attila ; Zhang, Yina ; Blum, Robert ; Heinsen, Helmut ; Nieswandt, Bernhard ; Rapp, Ulf R</creator><contributor>Kihara, Alexandre Hiroaki</contributor><creatorcontrib>Pfeiffer, Verena ; Götz, Rudolf ; Xiang, Chaomei ; Camarero, Guadelupe ; Braun, Attila ; Zhang, Yina ; Blum, Robert ; Heinsen, Helmut ; Nieswandt, Bernhard ; Rapp, Ulf R ; Kihara, Alexandre Hiroaki</creatorcontrib><description>This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0058259</identifier><identifier>PMID: 23505473</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Animals, Newborn ; Behavior, Animal ; Biology ; Brain ; Brain stem ; Cancer ; Cell culture ; Cell cycle ; Cell Differentiation - genetics ; Cell division ; Cell size ; Cells (biology) ; Cellular structure ; Cerebellum ; Cerebellum - growth &amp; development ; Cerebellum - metabolism ; Defects ; Dendritic structure ; Dentate gyrus ; Dentate Gyrus - growth &amp; development ; Dentate Gyrus - metabolism ; Fitness ; Gene Deletion ; Granular materials ; Hippocampus ; Hippocampus - growth &amp; development ; Hippocampus - metabolism ; Kinases ; Male ; Mammals ; Medicine ; Mice ; Mice, Transgenic ; Microtubule-associated protein 2 ; Mutation ; Nervous system ; Neural stem cells ; Neurobiology ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurophysiology ; Neurosciences ; Phenotype ; Phosphorylation ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; Purkinje cells ; Rodents ; Stem cells</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e58259</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Pfeiffer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Pfeiffer et al 2013 Pfeiffer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-5fcba90e35156b78fb7fb04b2bdc2b24e83dea57b856483ab3611ceab77c123e3</citedby><cites>FETCH-LOGICAL-c758t-5fcba90e35156b78fb7fb04b2bdc2b24e83dea57b856483ab3611ceab77c123e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591433/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591433/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23505473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kihara, Alexandre Hiroaki</contributor><creatorcontrib>Pfeiffer, Verena</creatorcontrib><creatorcontrib>Götz, Rudolf</creatorcontrib><creatorcontrib>Xiang, Chaomei</creatorcontrib><creatorcontrib>Camarero, Guadelupe</creatorcontrib><creatorcontrib>Braun, Attila</creatorcontrib><creatorcontrib>Zhang, Yina</creatorcontrib><creatorcontrib>Blum, Robert</creatorcontrib><creatorcontrib>Heinsen, Helmut</creatorcontrib><creatorcontrib>Nieswandt, Bernhard</creatorcontrib><creatorcontrib>Rapp, Ulf R</creatorcontrib><title>Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Behavior, Animal</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain stem</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell Differentiation - genetics</subject><subject>Cell division</subject><subject>Cell size</subject><subject>Cells (biology)</subject><subject>Cellular structure</subject><subject>Cerebellum</subject><subject>Cerebellum - growth &amp; development</subject><subject>Cerebellum - metabolism</subject><subject>Defects</subject><subject>Dendritic structure</subject><subject>Dentate gyrus</subject><subject>Dentate Gyrus - growth &amp; development</subject><subject>Dentate Gyrus - metabolism</subject><subject>Fitness</subject><subject>Gene Deletion</subject><subject>Granular materials</subject><subject>Hippocampus</subject><subject>Hippocampus - growth &amp; development</subject><subject>Hippocampus - metabolism</subject><subject>Kinases</subject><subject>Male</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microtubule-associated protein 2</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neural stem cells</subject><subject>Neurobiology</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Purkinje cells</subject><subject>Rodents</subject><subject>Stem cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7u7oPxAtCAtezJjPJr0RxsWPgYWF9eNOQpImMxnapiap6L8343SXKShILhKS57zn8OYtimcQrCBm8PXej6GX7WrwvVkBQDmi9YPiHNYYLSsE8MOT81lxEeM-Q5hX1ePiDGEKKGH4vPi2Vq1Mzvelt-XbW2lL1w3ShVj2Zgw-NygbZ60Jpk_uCLq-TDtTDj6mXqYM7NwweC27YYyl7JtSZ1qZth27J8UjK9tonk77ovjy_t3nq4_L65sPm6v19VIzytOSWq1kDQymkFaKcauYVYAopBqNFCKG48ZIyhSnFeFYKlxBqI1UjGmIsMGL4sVRd2h9FJMzUUCMAecQUZaJzZFovNyLIbhOhl_CSyf-XPiwFTIkp1sjCCV5LAJs1WBS64Y3yFpYSWaR1QbArPVm6jaqzjQ6WxNkOxOdv_RuJ7b-h8C0hgTjLPByEgj--2hi-sfIE7WVeSrXW5_FdOeiFmvCOK7J4UMXxeovVF6N6ZzO2bAu388KXs0KMpPMz7SVY4xi8-n2_9mbr3P28oTdGdmmXfTteMhMnIPkCOrgYwzG3jsHgThE-84NcYi2mKKdy56fun5fdJdl_Bu5EPVa</recordid><startdate>20130307</startdate><enddate>20130307</enddate><creator>Pfeiffer, Verena</creator><creator>Götz, Rudolf</creator><creator>Xiang, Chaomei</creator><creator>Camarero, Guadelupe</creator><creator>Braun, Attila</creator><creator>Zhang, Yina</creator><creator>Blum, Robert</creator><creator>Heinsen, Helmut</creator><creator>Nieswandt, Bernhard</creator><creator>Rapp, Ulf R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130307</creationdate><title>Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum</title><author>Pfeiffer, Verena ; Götz, Rudolf ; Xiang, Chaomei ; Camarero, Guadelupe ; Braun, Attila ; Zhang, Yina ; Blum, Robert ; Heinsen, Helmut ; Nieswandt, Bernhard ; Rapp, Ulf R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-5fcba90e35156b78fb7fb04b2bdc2b24e83dea57b856483ab3611ceab77c123e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Behavior, Animal</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain stem</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell Differentiation - genetics</topic><topic>Cell division</topic><topic>Cell size</topic><topic>Cells (biology)</topic><topic>Cellular structure</topic><topic>Cerebellum</topic><topic>Cerebellum - growth &amp; development</topic><topic>Cerebellum - metabolism</topic><topic>Defects</topic><topic>Dendritic structure</topic><topic>Dentate gyrus</topic><topic>Dentate Gyrus - growth &amp; development</topic><topic>Dentate Gyrus - metabolism</topic><topic>Fitness</topic><topic>Gene Deletion</topic><topic>Granular materials</topic><topic>Hippocampus</topic><topic>Hippocampus - growth &amp; development</topic><topic>Hippocampus - metabolism</topic><topic>Kinases</topic><topic>Male</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microtubule-associated protein 2</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neural stem cells</topic><topic>Neurobiology</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Purkinje cells</topic><topic>Rodents</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeiffer, Verena</creatorcontrib><creatorcontrib>Götz, Rudolf</creatorcontrib><creatorcontrib>Xiang, Chaomei</creatorcontrib><creatorcontrib>Camarero, Guadelupe</creatorcontrib><creatorcontrib>Braun, Attila</creatorcontrib><creatorcontrib>Zhang, Yina</creatorcontrib><creatorcontrib>Blum, Robert</creatorcontrib><creatorcontrib>Heinsen, Helmut</creatorcontrib><creatorcontrib>Nieswandt, Bernhard</creatorcontrib><creatorcontrib>Rapp, Ulf R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeiffer, Verena</au><au>Götz, Rudolf</au><au>Xiang, Chaomei</au><au>Camarero, Guadelupe</au><au>Braun, Attila</au><au>Zhang, Yina</au><au>Blum, Robert</au><au>Heinsen, Helmut</au><au>Nieswandt, Bernhard</au><au>Rapp, Ulf R</au><au>Kihara, Alexandre Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-07</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e58259</spage><pages>e58259-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23505473</pmid><doi>10.1371/journal.pone.0058259</doi><tpages>e58259</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-03, Vol.8 (3), p.e58259
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330881257
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Animals, Newborn
Behavior, Animal
Biology
Brain
Brain stem
Cancer
Cell culture
Cell cycle
Cell Differentiation - genetics
Cell division
Cell size
Cells (biology)
Cellular structure
Cerebellum
Cerebellum - growth & development
Cerebellum - metabolism
Defects
Dendritic structure
Dentate gyrus
Dentate Gyrus - growth & development
Dentate Gyrus - metabolism
Fitness
Gene Deletion
Granular materials
Hippocampus
Hippocampus - growth & development
Hippocampus - metabolism
Kinases
Male
Mammals
Medicine
Mice
Mice, Transgenic
Microtubule-associated protein 2
Mutation
Nervous system
Neural stem cells
Neurobiology
Neurogenesis
Neurons
Neurons - cytology
Neurons - metabolism
Neurophysiology
Neurosciences
Phenotype
Phosphorylation
Proteins
Proto-Oncogene Proteins B-raf - genetics
Purkinje cells
Rodents
Stem cells
title Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ablation%20of%20BRaf%20impairs%20neuronal%20differentiation%20in%20the%20postnatal%20hippocampus%20and%20cerebellum&rft.jtitle=PloS%20one&rft.au=Pfeiffer,%20Verena&rft.date=2013-03-07&rft.volume=8&rft.issue=3&rft.spage=e58259&rft.pages=e58259-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0058259&rft_dat=%3Cgale_plos_%3EA478394005%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1330881257&rft_id=info:pmid/23505473&rft_galeid=A478394005&rft_doaj_id=oai_doaj_org_article_454c7540f6d349cd8d2ff16a7f2fce01&rfr_iscdi=true