The fidelity of dynamic signaling by noisy biomolecular networks

Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-03, Vol.9 (3), p.e1002965-e1002965
Hauptverfasser: Bowsher, Clive G, Voliotis, Margaritis, Swain, Peter S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002965
container_issue 3
container_start_page e1002965
container_title PLoS computational biology
container_volume 9
creator Bowsher, Clive G
Voliotis, Margaritis
Swain, Peter S
description Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.
doi_str_mv 10.1371/journal.pcbi.1002965
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330878864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A326658596</galeid><doaj_id>oai_doaj_org_article_3d197daa2d374707933e6ffaf5205bcf</doaj_id><sourcerecordid>A326658596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-7010a7faa6a9d00ec22f96980c968efcd876ccbdff3a31f593a1b8773094e9423</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkSA-72HH8dUFUVYGVKpCgnK2JP1IvSbzYCZB_j5dNq-4R-WBr_MzrmfFbFC8xWmPC8dttmOIA3XqnG7_GCFWS0UfFKaaUrDih4vGD80nxLKUtQvko2dPipCKU0gqJ0-L9za0tnTe28-NcBleaeYDe6zL5Nqv7oS2buRyCT3PZ-NCHzuqpg1gOdvwd4o_0vHjioEv2xbKfFd8_XN1cflpdf_m4uby4XmmG6LjiCCPgDoCBNAhZXVVOMimQlkxYp43gTOvGOEeAYEclAdwIzgmStZV1Rc6K1wfdXReSWppPChOCBBeC1ZnYHAgTYKt20fcQZxXAq3-BEFsFcfS6s4oYLLkBqAzhNUdcEmKZc-DyUGijXdZ6t7w2Nb012g5jhO5I9Phm8LeqDb8UYRgxSrLAm0Ughp-TTaPqfdK262CwYdrXXdVE8Ers0fUBbSGX5gcXsqLOy9j8EWGwzuf4BakYo4JKlhPOjxIyM9o_YwtTSmrz7et_sJ-P2frA6hhSitbd94uR2nvubuxq7zm1eC6nvXo4q_ukO5ORv84n09s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324387283</pqid></control><display><type>article</type><title>The fidelity of dynamic signaling by noisy biomolecular networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Bowsher, Clive G ; Voliotis, Margaritis ; Swain, Peter S</creator><creatorcontrib>Bowsher, Clive G ; Voliotis, Margaritis ; Swain, Peter S</creatorcontrib><description>Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002965</identifier><identifier>PMID: 23555208</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cellular signal transduction ; Computational Biology ; Decision making ; Decomposition ; Feedback, Physiological - physiology ; Gene Expression ; Information theory ; Life sciences ; Mathematical models ; Mathematics ; Models, Biological ; Noise ; Random variables ; Signal transduction ; Signal Transduction - physiology ; Stochastic processes ; Studies</subject><ispartof>PLoS computational biology, 2013-03, Vol.9 (3), p.e1002965-e1002965</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Bowsher et al 2013 Bowsher et al</rights><rights>2013 Bowsher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bowsher CG, Voliotis M, Swain PS (2013) The Fidelity of Dynamic Signaling by Noisy Biomolecular Networks. PLoS Comput Biol 9(3): e1002965. doi:10.1371/journal.pcbi.1002965</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-7010a7faa6a9d00ec22f96980c968efcd876ccbdff3a31f593a1b8773094e9423</citedby><cites>FETCH-LOGICAL-c605t-7010a7faa6a9d00ec22f96980c968efcd876ccbdff3a31f593a1b8773094e9423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610653/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610653/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23555208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowsher, Clive G</creatorcontrib><creatorcontrib>Voliotis, Margaritis</creatorcontrib><creatorcontrib>Swain, Peter S</creatorcontrib><title>The fidelity of dynamic signaling by noisy biomolecular networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.</description><subject>Biology</subject><subject>Cellular signal transduction</subject><subject>Computational Biology</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Feedback, Physiological - physiology</subject><subject>Gene Expression</subject><subject>Information theory</subject><subject>Life sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Random variables</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkSA-72HH8dUFUVYGVKpCgnK2JP1IvSbzYCZB_j5dNq-4R-WBr_MzrmfFbFC8xWmPC8dttmOIA3XqnG7_GCFWS0UfFKaaUrDih4vGD80nxLKUtQvko2dPipCKU0gqJ0-L9za0tnTe28-NcBleaeYDe6zL5Nqv7oS2buRyCT3PZ-NCHzuqpg1gOdvwd4o_0vHjioEv2xbKfFd8_XN1cflpdf_m4uby4XmmG6LjiCCPgDoCBNAhZXVVOMimQlkxYp43gTOvGOEeAYEclAdwIzgmStZV1Rc6K1wfdXReSWppPChOCBBeC1ZnYHAgTYKt20fcQZxXAq3-BEFsFcfS6s4oYLLkBqAzhNUdcEmKZc-DyUGijXdZ6t7w2Nb012g5jhO5I9Phm8LeqDb8UYRgxSrLAm0Ughp-TTaPqfdK262CwYdrXXdVE8Ers0fUBbSGX5gcXsqLOy9j8EWGwzuf4BakYo4JKlhPOjxIyM9o_YwtTSmrz7et_sJ-P2frA6hhSitbd94uR2nvubuxq7zm1eC6nvXo4q_ukO5ORv84n09s</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Bowsher, Clive G</creator><creator>Voliotis, Margaritis</creator><creator>Swain, Peter S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130301</creationdate><title>The fidelity of dynamic signaling by noisy biomolecular networks</title><author>Bowsher, Clive G ; Voliotis, Margaritis ; Swain, Peter S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-7010a7faa6a9d00ec22f96980c968efcd876ccbdff3a31f593a1b8773094e9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biology</topic><topic>Cellular signal transduction</topic><topic>Computational Biology</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Feedback, Physiological - physiology</topic><topic>Gene Expression</topic><topic>Information theory</topic><topic>Life sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Random variables</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowsher, Clive G</creatorcontrib><creatorcontrib>Voliotis, Margaritis</creatorcontrib><creatorcontrib>Swain, Peter S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowsher, Clive G</au><au>Voliotis, Margaritis</au><au>Swain, Peter S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fidelity of dynamic signaling by noisy biomolecular networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>9</volume><issue>3</issue><spage>e1002965</spage><epage>e1002965</epage><pages>e1002965-e1002965</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23555208</pmid><doi>10.1371/journal.pcbi.1002965</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-03, Vol.9 (3), p.e1002965-e1002965
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1330878864
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Biology
Cellular signal transduction
Computational Biology
Decision making
Decomposition
Feedback, Physiological - physiology
Gene Expression
Information theory
Life sciences
Mathematical models
Mathematics
Models, Biological
Noise
Random variables
Signal transduction
Signal Transduction - physiology
Stochastic processes
Studies
title The fidelity of dynamic signaling by noisy biomolecular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fidelity%20of%20dynamic%20signaling%20by%20noisy%20biomolecular%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Bowsher,%20Clive%20G&rft.date=2013-03-01&rft.volume=9&rft.issue=3&rft.spage=e1002965&rft.epage=e1002965&rft.pages=e1002965-e1002965&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002965&rft_dat=%3Cgale_plos_%3EA326658596%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324387283&rft_id=info:pmid/23555208&rft_galeid=A326658596&rft_doaj_id=oai_doaj_org_article_3d197daa2d374707933e6ffaf5205bcf&rfr_iscdi=true