West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities
Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of W...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-01, Vol.8 (1), p.e55006-e55006 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e55006 |
---|---|
container_issue | 1 |
container_start_page | e55006 |
container_title | PloS one |
container_volume | 8 |
creator | Crowder, David W Dykstra, Elizabeth A Brauner, Jo Marie Duffy, Anne Reed, Caitlin Martin, Emily Peterson, Wade Carrière, Yves Dutilleul, Pierre Owen, Jeb P |
description | Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions. |
doi_str_mv | 10.1371/journal.pone.0055006 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327979367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477937573</galeid><doaj_id>oai_doaj_org_article_fb6f99c1750a4f8f943cd96726707f85</doaj_id><sourcerecordid>A477937573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ac630e7162e2bc89ff9ec5a5c030e99705b5bbeb4bce9c961b43b82e0bd935e63</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLJliVZN4NS9hEoFPZ5KST5KFFQrEyys_XfT2ncEo9eDF1YHD_ve-zzURTPSzwvCS_frcMQO-Xn29DBHGNKMWYPitNSkGrGKkweHt1PiicprTNEGsYeFycVIQ3BpDotfv-E1KPOeUA7F4eEthF2ykNnACkTQ0rIq65NRm0hIZfQBlqnemiRvkY-GOURWAumTyhYpJbRmcH3QwQUOrTL8RBR1qNVyGlM2GyGzvUO0tPikVU-wbPxeVZ8__jh28Xn2eXVp8XF-eXMMFH1M2UYwcBLVkGlTSOsFWCoogbnsBAcU021Bl1rA8IIVuqa6KYCrFtBKDByVrw8-G59SHKsWZIlqbjggjCeicWBaINay210GxWvZVBO3gRCXEoVe2c8SKuZFcKUnGJV28aKmphWMF4xjrltaPZ6P2YbdC6Uga6Pyk9Mp286t5LLsJOE0tyrJhu8GQ1i-DXk1siNSwZ87gGEIX931dSsqllJMvrqH_T-vxupZW6qdJ0NOa_Zm8rzmmeGU773mt9D5dPCxpk8YDYPyFTwdiLITA9_-qUaUpKLr1_-n736MWVfH7ErUL5fpeCH3oUuTcH6AN7MaAR7V-QSy_1-3FZD7vdDjvuRZS-OG3Qnul0I8hcj1gy6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327979367</pqid></control><display><type>article</type><title>West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Crowder, David W ; Dykstra, Elizabeth A ; Brauner, Jo Marie ; Duffy, Anne ; Reed, Caitlin ; Martin, Emily ; Peterson, Wade ; Carrière, Yves ; Dutilleul, Pierre ; Owen, Jeb P</creator><contributor>Wang, Tian</contributor><creatorcontrib>Crowder, David W ; Dykstra, Elizabeth A ; Brauner, Jo Marie ; Duffy, Anne ; Reed, Caitlin ; Martin, Emily ; Peterson, Wade ; Carrière, Yves ; Dutilleul, Pierre ; Owen, Jeb P ; Wang, Tian</creatorcontrib><description>Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0055006</identifier><identifier>PMID: 23383032</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural land ; Agriculture ; Agriculture - statistics & numerical data ; Animals ; Aquatic insects ; Arthropods ; Biology ; Bird Diseases - epidemiology ; Bird Diseases - transmission ; Birds ; Birds - virology ; Climate ; Climate change ; Climatic conditions ; Culex - physiology ; Culex pipiens ; Culicidae ; Disease ; Disease transmission ; Drought ; Ecology ; Encephalitis ; Epidemics ; Female ; Females ; Forage crops ; Foraging habitats ; Geospatial data ; Habitats ; Health risks ; Horse Diseases - epidemiology ; Horse Diseases - transmission ; Horses ; Horses - virology ; Humans ; Infection ; Infections ; Insect control ; Insect Vectors - physiology ; Land use ; Landscape ; Livestock ; Medicine ; Mosquitoes ; Orchards ; Pathogens ; Precipitation ; Precipitation (Meteorology) ; Prevalence ; Rain ; Rainfall ; Spatial Analysis ; Spatial distribution ; Tropical diseases ; Vectors ; Viruses ; West Nile fever ; West Nile Fever - epidemiology ; West Nile Fever - transmission ; West Nile Fever - veterinary ; West Nile virus ; West Nile virus - physiology ; Wildlife ; Wildlife habitats</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e55006-e55006</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Crowder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Crowder et al 2013 Crowder et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ac630e7162e2bc89ff9ec5a5c030e99705b5bbeb4bce9c961b43b82e0bd935e63</citedby><cites>FETCH-LOGICAL-c692t-ac630e7162e2bc89ff9ec5a5c030e99705b5bbeb4bce9c961b43b82e0bd935e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559328/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559328/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23383032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Tian</contributor><creatorcontrib>Crowder, David W</creatorcontrib><creatorcontrib>Dykstra, Elizabeth A</creatorcontrib><creatorcontrib>Brauner, Jo Marie</creatorcontrib><creatorcontrib>Duffy, Anne</creatorcontrib><creatorcontrib>Reed, Caitlin</creatorcontrib><creatorcontrib>Martin, Emily</creatorcontrib><creatorcontrib>Peterson, Wade</creatorcontrib><creatorcontrib>Carrière, Yves</creatorcontrib><creatorcontrib>Dutilleul, Pierre</creatorcontrib><creatorcontrib>Owen, Jeb P</creatorcontrib><title>West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.</description><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Agriculture - statistics & numerical data</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Arthropods</subject><subject>Biology</subject><subject>Bird Diseases - epidemiology</subject><subject>Bird Diseases - transmission</subject><subject>Birds</subject><subject>Birds - virology</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Culex - physiology</subject><subject>Culex pipiens</subject><subject>Culicidae</subject><subject>Disease</subject><subject>Disease transmission</subject><subject>Drought</subject><subject>Ecology</subject><subject>Encephalitis</subject><subject>Epidemics</subject><subject>Female</subject><subject>Females</subject><subject>Forage crops</subject><subject>Foraging habitats</subject><subject>Geospatial data</subject><subject>Habitats</subject><subject>Health risks</subject><subject>Horse Diseases - epidemiology</subject><subject>Horse Diseases - transmission</subject><subject>Horses</subject><subject>Horses - virology</subject><subject>Humans</subject><subject>Infection</subject><subject>Infections</subject><subject>Insect control</subject><subject>Insect Vectors - physiology</subject><subject>Land use</subject><subject>Landscape</subject><subject>Livestock</subject><subject>Medicine</subject><subject>Mosquitoes</subject><subject>Orchards</subject><subject>Pathogens</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Prevalence</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Spatial Analysis</subject><subject>Spatial distribution</subject><subject>Tropical diseases</subject><subject>Vectors</subject><subject>Viruses</subject><subject>West Nile fever</subject><subject>West Nile Fever - epidemiology</subject><subject>West Nile Fever - transmission</subject><subject>West Nile Fever - veterinary</subject><subject>West Nile virus</subject><subject>West Nile virus - physiology</subject><subject>Wildlife</subject><subject>Wildlife habitats</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLJliVZN4NS9hEoFPZ5KST5KFFQrEyys_XfT2ncEo9eDF1YHD_ve-zzURTPSzwvCS_frcMQO-Xn29DBHGNKMWYPitNSkGrGKkweHt1PiicprTNEGsYeFycVIQ3BpDotfv-E1KPOeUA7F4eEthF2ykNnACkTQ0rIq65NRm0hIZfQBlqnemiRvkY-GOURWAumTyhYpJbRmcH3QwQUOrTL8RBR1qNVyGlM2GyGzvUO0tPikVU-wbPxeVZ8__jh28Xn2eXVp8XF-eXMMFH1M2UYwcBLVkGlTSOsFWCoogbnsBAcU021Bl1rA8IIVuqa6KYCrFtBKDByVrw8-G59SHKsWZIlqbjggjCeicWBaINay210GxWvZVBO3gRCXEoVe2c8SKuZFcKUnGJV28aKmphWMF4xjrltaPZ6P2YbdC6Uga6Pyk9Mp286t5LLsJOE0tyrJhu8GQ1i-DXk1siNSwZ87gGEIX931dSsqllJMvrqH_T-vxupZW6qdJ0NOa_Zm8rzmmeGU773mt9D5dPCxpk8YDYPyFTwdiLITA9_-qUaUpKLr1_-n736MWVfH7ErUL5fpeCH3oUuTcH6AN7MaAR7V-QSy_1-3FZD7vdDjvuRZS-OG3Qnul0I8hcj1gy6</recordid><startdate>20130130</startdate><enddate>20130130</enddate><creator>Crowder, David W</creator><creator>Dykstra, Elizabeth A</creator><creator>Brauner, Jo Marie</creator><creator>Duffy, Anne</creator><creator>Reed, Caitlin</creator><creator>Martin, Emily</creator><creator>Peterson, Wade</creator><creator>Carrière, Yves</creator><creator>Dutilleul, Pierre</creator><creator>Owen, Jeb P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130130</creationdate><title>West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities</title><author>Crowder, David W ; Dykstra, Elizabeth A ; Brauner, Jo Marie ; Duffy, Anne ; Reed, Caitlin ; Martin, Emily ; Peterson, Wade ; Carrière, Yves ; Dutilleul, Pierre ; Owen, Jeb P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ac630e7162e2bc89ff9ec5a5c030e99705b5bbeb4bce9c961b43b82e0bd935e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Agriculture - statistics & numerical data</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Arthropods</topic><topic>Biology</topic><topic>Bird Diseases - epidemiology</topic><topic>Bird Diseases - transmission</topic><topic>Birds</topic><topic>Birds - virology</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Culex - physiology</topic><topic>Culex pipiens</topic><topic>Culicidae</topic><topic>Disease</topic><topic>Disease transmission</topic><topic>Drought</topic><topic>Ecology</topic><topic>Encephalitis</topic><topic>Epidemics</topic><topic>Female</topic><topic>Females</topic><topic>Forage crops</topic><topic>Foraging habitats</topic><topic>Geospatial data</topic><topic>Habitats</topic><topic>Health risks</topic><topic>Horse Diseases - epidemiology</topic><topic>Horse Diseases - transmission</topic><topic>Horses</topic><topic>Horses - virology</topic><topic>Humans</topic><topic>Infection</topic><topic>Infections</topic><topic>Insect control</topic><topic>Insect Vectors - physiology</topic><topic>Land use</topic><topic>Landscape</topic><topic>Livestock</topic><topic>Medicine</topic><topic>Mosquitoes</topic><topic>Orchards</topic><topic>Pathogens</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Prevalence</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Spatial Analysis</topic><topic>Spatial distribution</topic><topic>Tropical diseases</topic><topic>Vectors</topic><topic>Viruses</topic><topic>West Nile fever</topic><topic>West Nile Fever - epidemiology</topic><topic>West Nile Fever - transmission</topic><topic>West Nile Fever - veterinary</topic><topic>West Nile virus</topic><topic>West Nile virus - physiology</topic><topic>Wildlife</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowder, David W</creatorcontrib><creatorcontrib>Dykstra, Elizabeth A</creatorcontrib><creatorcontrib>Brauner, Jo Marie</creatorcontrib><creatorcontrib>Duffy, Anne</creatorcontrib><creatorcontrib>Reed, Caitlin</creatorcontrib><creatorcontrib>Martin, Emily</creatorcontrib><creatorcontrib>Peterson, Wade</creatorcontrib><creatorcontrib>Carrière, Yves</creatorcontrib><creatorcontrib>Dutilleul, Pierre</creatorcontrib><creatorcontrib>Owen, Jeb P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowder, David W</au><au>Dykstra, Elizabeth A</au><au>Brauner, Jo Marie</au><au>Duffy, Anne</au><au>Reed, Caitlin</au><au>Martin, Emily</au><au>Peterson, Wade</au><au>Carrière, Yves</au><au>Dutilleul, Pierre</au><au>Owen, Jeb P</au><au>Wang, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-30</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e55006</spage><epage>e55006</epage><pages>e55006-e55006</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23383032</pmid><doi>10.1371/journal.pone.0055006</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-01, Vol.8 (1), p.e55006-e55006 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327979367 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Agricultural land Agriculture Agriculture - statistics & numerical data Animals Aquatic insects Arthropods Biology Bird Diseases - epidemiology Bird Diseases - transmission Birds Birds - virology Climate Climate change Climatic conditions Culex - physiology Culex pipiens Culicidae Disease Disease transmission Drought Ecology Encephalitis Epidemics Female Females Forage crops Foraging habitats Geospatial data Habitats Health risks Horse Diseases - epidemiology Horse Diseases - transmission Horses Horses - virology Humans Infection Infections Insect control Insect Vectors - physiology Land use Landscape Livestock Medicine Mosquitoes Orchards Pathogens Precipitation Precipitation (Meteorology) Prevalence Rain Rainfall Spatial Analysis Spatial distribution Tropical diseases Vectors Viruses West Nile fever West Nile Fever - epidemiology West Nile Fever - transmission West Nile Fever - veterinary West Nile virus West Nile virus - physiology Wildlife Wildlife habitats |
title | West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=West%20nile%20virus%20prevalence%20across%20landscapes%20is%20mediated%20by%20local%20effects%20of%20agriculture%20on%20vector%20and%20host%20communities&rft.jtitle=PloS%20one&rft.au=Crowder,%20David%20W&rft.date=2013-01-30&rft.volume=8&rft.issue=1&rft.spage=e55006&rft.epage=e55006&rft.pages=e55006-e55006&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0055006&rft_dat=%3Cgale_plos_%3EA477937573%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327979367&rft_id=info:pmid/23383032&rft_galeid=A477937573&rft_doaj_id=oai_doaj_org_article_fb6f99c1750a4f8f943cd96726707f85&rfr_iscdi=true |