Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin

For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-01, Vol.8 (1), p.e53771-e53771
Hauptverfasser: Nasu, Akira, Ikeya, Makoto, Yamamoto, Takuya, Watanabe, Akira, Jin, Yonghui, Matsumoto, Yoshihisa, Hayakawa, Kazuo, Amano, Naoki, Sato, Shingo, Osafune, Kenji, Aoyama, Tomoki, Nakamura, Takashi, Kato, Tomohisa, Toguchida, Junya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e53771
container_issue 1
container_start_page e53771
container_title PloS one
container_volume 8
creator Nasu, Akira
Ikeya, Makoto
Yamamoto, Takuya
Watanabe, Akira
Jin, Yonghui
Matsumoto, Yoshihisa
Hayakawa, Kazuo
Amano, Naoki
Sato, Shingo
Osafune, Kenji
Aoyama, Tomoki
Nakamura, Takashi
Kato, Tomohisa
Toguchida, Junya
description For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified. Genetically matched human iPSCs from different origins were generated using bone marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin. The reprogramming process may remove the difference between DFs and BMSCs at least for chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this study are valuable resources for further basic study of clonal differences.
doi_str_mv 10.1371/journal.pone.0053771
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327941529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477926888</galeid><doaj_id>oai_doaj_org_article_df60f45ec31e4744a543588258eb64f3</doaj_id><sourcerecordid>A477926888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-48dbd8cc50ea4bde2dc09075e758d1785bb4fd2e0be8ab278ac7e5948dbb0a6f3</originalsourceid><addsrcrecordid>eNqNk99qFDEUxgdRbK2-gWhAEAV3ncmfSeZGKEVroVCx6m3IZE52UrKTNclU9yV8ZjPttHSlFzIXmSS_7zs5JzlF8bwqlxXh1fsLP4ZBueXGD7AsS0Y4rx4U-1VD8KLGJXl453-veBLjxQSJun5c7GFCBBas2i_-HMMAyWrl3BatVdI9dKgf12pA9ss50uBcRAEuQTmUepXQJvgNDNGmLTI-IK1Csk6tAKmhQ20-C-qsMRBgSFYl64d5HtEvm3qkXUbiOzT4dGWO0nYDyBvkg13Z4WnxyCgX4dk8HhTfP338dvR5cXp2fHJ0eLrQdYPTgoqu7YTWrARF2w5wp8um5Aw4E13FBWtbajoMZQtCtZgLpTmwZpK1paoNOSheXvtunI9yLmWUFcG8oRXDTSZOronOqwu5CXatwlZ6ZeXVgg8rOaWuHcjO1KWhDDSpgHJKFaOECYGZgLamhmSvD3O0sV1Dp3NtgnI7prs7g-3lyl9KwuqKNCIbvJkNgv85QkxybeNUPjWAH_O5saA1prypM_rqH_T-7GZqpXICdjA-x9WTqTyknDe4FmIKu7yHyl8Ha6vzRRqb13cEb3cEmUnwO63UGKM8Of_6_-zZj1329R22z48x9dG7cXpfcRek16AOPsYA5rbIVSmntrmphpzaRs5tk2Uv7l7QreimT8hflykVlw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327941529</pqid></control><display><type>article</type><title>Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nasu, Akira ; Ikeya, Makoto ; Yamamoto, Takuya ; Watanabe, Akira ; Jin, Yonghui ; Matsumoto, Yoshihisa ; Hayakawa, Kazuo ; Amano, Naoki ; Sato, Shingo ; Osafune, Kenji ; Aoyama, Tomoki ; Nakamura, Takashi ; Kato, Tomohisa ; Toguchida, Junya</creator><contributor>Hu, Guang</contributor><creatorcontrib>Nasu, Akira ; Ikeya, Makoto ; Yamamoto, Takuya ; Watanabe, Akira ; Jin, Yonghui ; Matsumoto, Yoshihisa ; Hayakawa, Kazuo ; Amano, Naoki ; Sato, Shingo ; Osafune, Kenji ; Aoyama, Tomoki ; Nakamura, Takashi ; Kato, Tomohisa ; Toguchida, Junya ; Hu, Guang</creatorcontrib><description>For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified. Genetically matched human iPSCs from different origins were generated using bone marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin. The reprogramming process may remove the difference between DFs and BMSCs at least for chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this study are valuable resources for further basic study of clonal differences.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0053771</identifier><identifier>PMID: 23382851</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal behavior ; Biocompatibility ; Biology ; Biomedical materials ; Bone Development - genetics ; Bone marrow ; Bone marrow transplantation ; Cartilage ; Cartilage - cytology ; Cartilage - growth &amp; development ; Cell Differentiation ; Cell growth ; Cell Lineage ; Clonal Evolution - genetics ; Cloning ; Deoxyribonucleic acid ; Differentiation ; DNA ; DNA fingerprinting ; DNA methylation ; DNA Methylation - genetics ; Efficiency ; Fibroblasts ; Fibroblasts - cytology ; Gene expression ; Gene Expression Regulation, Developmental ; Genes ; Genomes ; Genomics ; Humans ; Induced Pluripotent Stem Cells - cytology ; Medicine ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Methylation ; Pluripotency ; Science ; Skin ; Stem cell transplantation ; Stem cells ; Stromal cells ; Surgery ; Tissue engineering</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e53771-e53771</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Nasu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Nasu et al 2013 Nasu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-48dbd8cc50ea4bde2dc09075e758d1785bb4fd2e0be8ab278ac7e5948dbb0a6f3</citedby><cites>FETCH-LOGICAL-c692t-48dbd8cc50ea4bde2dc09075e758d1785bb4fd2e0be8ab278ac7e5948dbb0a6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23382851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hu, Guang</contributor><creatorcontrib>Nasu, Akira</creatorcontrib><creatorcontrib>Ikeya, Makoto</creatorcontrib><creatorcontrib>Yamamoto, Takuya</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Jin, Yonghui</creatorcontrib><creatorcontrib>Matsumoto, Yoshihisa</creatorcontrib><creatorcontrib>Hayakawa, Kazuo</creatorcontrib><creatorcontrib>Amano, Naoki</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Osafune, Kenji</creatorcontrib><creatorcontrib>Aoyama, Tomoki</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Kato, Tomohisa</creatorcontrib><creatorcontrib>Toguchida, Junya</creatorcontrib><title>Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified. Genetically matched human iPSCs from different origins were generated using bone marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin. The reprogramming process may remove the difference between DFs and BMSCs at least for chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this study are valuable resources for further basic study of clonal differences.</description><subject>Analysis</subject><subject>Animal behavior</subject><subject>Biocompatibility</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Bone Development - genetics</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Cartilage</subject><subject>Cartilage - cytology</subject><subject>Cartilage - growth &amp; development</subject><subject>Cell Differentiation</subject><subject>Cell growth</subject><subject>Cell Lineage</subject><subject>Clonal Evolution - genetics</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation</subject><subject>DNA</subject><subject>DNA fingerprinting</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Efficiency</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Medicine</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Methylation</subject><subject>Pluripotency</subject><subject>Science</subject><subject>Skin</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Surgery</subject><subject>Tissue engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99qFDEUxgdRbK2-gWhAEAV3ncmfSeZGKEVroVCx6m3IZE52UrKTNclU9yV8ZjPttHSlFzIXmSS_7zs5JzlF8bwqlxXh1fsLP4ZBueXGD7AsS0Y4rx4U-1VD8KLGJXl453-veBLjxQSJun5c7GFCBBas2i_-HMMAyWrl3BatVdI9dKgf12pA9ss50uBcRAEuQTmUepXQJvgNDNGmLTI-IK1Csk6tAKmhQ20-C-qsMRBgSFYl64d5HtEvm3qkXUbiOzT4dGWO0nYDyBvkg13Z4WnxyCgX4dk8HhTfP338dvR5cXp2fHJ0eLrQdYPTgoqu7YTWrARF2w5wp8um5Aw4E13FBWtbajoMZQtCtZgLpTmwZpK1paoNOSheXvtunI9yLmWUFcG8oRXDTSZOronOqwu5CXatwlZ6ZeXVgg8rOaWuHcjO1KWhDDSpgHJKFaOECYGZgLamhmSvD3O0sV1Dp3NtgnI7prs7g-3lyl9KwuqKNCIbvJkNgv85QkxybeNUPjWAH_O5saA1prypM_rqH_T-7GZqpXICdjA-x9WTqTyknDe4FmIKu7yHyl8Ha6vzRRqb13cEb3cEmUnwO63UGKM8Of_6_-zZj1329R22z48x9dG7cXpfcRek16AOPsYA5rbIVSmntrmphpzaRs5tk2Uv7l7QreimT8hflykVlw</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Nasu, Akira</creator><creator>Ikeya, Makoto</creator><creator>Yamamoto, Takuya</creator><creator>Watanabe, Akira</creator><creator>Jin, Yonghui</creator><creator>Matsumoto, Yoshihisa</creator><creator>Hayakawa, Kazuo</creator><creator>Amano, Naoki</creator><creator>Sato, Shingo</creator><creator>Osafune, Kenji</creator><creator>Aoyama, Tomoki</creator><creator>Nakamura, Takashi</creator><creator>Kato, Tomohisa</creator><creator>Toguchida, Junya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130131</creationdate><title>Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin</title><author>Nasu, Akira ; Ikeya, Makoto ; Yamamoto, Takuya ; Watanabe, Akira ; Jin, Yonghui ; Matsumoto, Yoshihisa ; Hayakawa, Kazuo ; Amano, Naoki ; Sato, Shingo ; Osafune, Kenji ; Aoyama, Tomoki ; Nakamura, Takashi ; Kato, Tomohisa ; Toguchida, Junya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-48dbd8cc50ea4bde2dc09075e758d1785bb4fd2e0be8ab278ac7e5948dbb0a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animal behavior</topic><topic>Biocompatibility</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Bone Development - genetics</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Cartilage</topic><topic>Cartilage - cytology</topic><topic>Cartilage - growth &amp; development</topic><topic>Cell Differentiation</topic><topic>Cell growth</topic><topic>Cell Lineage</topic><topic>Clonal Evolution - genetics</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation</topic><topic>DNA</topic><topic>DNA fingerprinting</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Efficiency</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Medicine</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Methylation</topic><topic>Pluripotency</topic><topic>Science</topic><topic>Skin</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Surgery</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasu, Akira</creatorcontrib><creatorcontrib>Ikeya, Makoto</creatorcontrib><creatorcontrib>Yamamoto, Takuya</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Jin, Yonghui</creatorcontrib><creatorcontrib>Matsumoto, Yoshihisa</creatorcontrib><creatorcontrib>Hayakawa, Kazuo</creatorcontrib><creatorcontrib>Amano, Naoki</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Osafune, Kenji</creatorcontrib><creatorcontrib>Aoyama, Tomoki</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Kato, Tomohisa</creatorcontrib><creatorcontrib>Toguchida, Junya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasu, Akira</au><au>Ikeya, Makoto</au><au>Yamamoto, Takuya</au><au>Watanabe, Akira</au><au>Jin, Yonghui</au><au>Matsumoto, Yoshihisa</au><au>Hayakawa, Kazuo</au><au>Amano, Naoki</au><au>Sato, Shingo</au><au>Osafune, Kenji</au><au>Aoyama, Tomoki</au><au>Nakamura, Takashi</au><au>Kato, Tomohisa</au><au>Toguchida, Junya</au><au>Hu, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-31</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e53771</spage><epage>e53771</epage><pages>e53771-e53771</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified. Genetically matched human iPSCs from different origins were generated using bone marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin. The reprogramming process may remove the difference between DFs and BMSCs at least for chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this study are valuable resources for further basic study of clonal differences.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23382851</pmid><doi>10.1371/journal.pone.0053771</doi><tpages>e53771</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-01, Vol.8 (1), p.e53771-e53771
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327941529
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animal behavior
Biocompatibility
Biology
Biomedical materials
Bone Development - genetics
Bone marrow
Bone marrow transplantation
Cartilage
Cartilage - cytology
Cartilage - growth & development
Cell Differentiation
Cell growth
Cell Lineage
Clonal Evolution - genetics
Cloning
Deoxyribonucleic acid
Differentiation
DNA
DNA fingerprinting
DNA methylation
DNA Methylation - genetics
Efficiency
Fibroblasts
Fibroblasts - cytology
Gene expression
Gene Expression Regulation, Developmental
Genes
Genomes
Genomics
Humans
Induced Pluripotent Stem Cells - cytology
Medicine
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Methylation
Pluripotency
Science
Skin
Stem cell transplantation
Stem cells
Stromal cells
Surgery
Tissue engineering
title Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20matched%20human%20iPS%20cells%20reveal%20that%20propensity%20for%20cartilage%20and%20bone%20differentiation%20differs%20with%20clones,%20not%20cell%20type%20of%20origin&rft.jtitle=PloS%20one&rft.au=Nasu,%20Akira&rft.date=2013-01-31&rft.volume=8&rft.issue=1&rft.spage=e53771&rft.epage=e53771&rft.pages=e53771-e53771&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0053771&rft_dat=%3Cgale_plos_%3EA477926888%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327941529&rft_id=info:pmid/23382851&rft_galeid=A477926888&rft_doaj_id=oai_doaj_org_article_df60f45ec31e4744a543588258eb64f3&rfr_iscdi=true