PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells

It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. Rat insulinoma INS-1 c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013, Vol.8 (1), p.e50128
Hauptverfasser: Kim, Hyo-Sup, Hwang, You-Cheol, Koo, Seung-Hoi, Park, Kyong Soo, Lee, Myung-Shik, Kim, Kwang-Won, Lee, Moon-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e50128
container_title PloS one
container_volume 8
creator Kim, Hyo-Sup
Hwang, You-Cheol
Koo, Seung-Hoi
Park, Kyong Soo
Lee, Myung-Shik
Kim, Kwang-Won
Lee, Moon-Kyu
description It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ) and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA) receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.
doi_str_mv 10.1371/journal.pone.0050128
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1327899074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a6fd252d5f84f068ffee2b8b9abf542</doaj_id><sourcerecordid>2946342011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-17774e5efd108c6332dedea7525a4452ef0ed6680b120178eab85b19318d89a73</originalsourceid><addsrcrecordid>eNp1kttq3DAQhk1paQ7tG5TW0GtvdbAOvimE0CaBQJeQXAvZGu16USxXkgN5gLxQ-x55pmp3nZBc9EYjZv7_m2GYoviE0QJTgb9t_BQG7RajH2CBEEOYyDfFIW4oqThB9O2L_0FxFOMmi6jk_H1xQCgVhNf0sHhYLk-uqse_pe5Sf6dT74eyH7oAOkLMvzi5figj5MyultbBT6t1jlBOYxVgNbm9y9td0gbIj07pPiN7UwboYEw-lGfLqxplYjnqHT_1Xfn4p-rAufiheGe1i_BxjsfFzc8f16fn1eWvs4vTk8uqY4SnCgshamBgDUay45QSAwa0YITpumYELALDuUQtJggLCbqVrM1bwNLIRgt6XHzZc0fno5o3GBWmRMimQaLOiou9wni9UWPob3W4V173apfwYaV0yKM7UEhzawgjhllZW8SltQCklW2jW8tqklnf525TewumgyEF7V5BX1eGfq1W_k5RxigWW8DXGRD87wli-s_I9V7VBR9jAPvcASO1PZUnl9qeippPJds-v5zu2fR0G_Qfg9HANw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327899074</pqid></control><display><type>article</type><title>PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Hyo-Sup ; Hwang, You-Cheol ; Koo, Seung-Hoi ; Park, Kyong Soo ; Lee, Myung-Shik ; Kim, Kwang-Won ; Lee, Moon-Kyu</creator><contributor>Sesti, Giorgio</contributor><creatorcontrib>Kim, Hyo-Sup ; Hwang, You-Cheol ; Koo, Seung-Hoi ; Park, Kyong Soo ; Lee, Myung-Shik ; Kim, Kwang-Won ; Lee, Moon-Kyu ; Sesti, Giorgio</creatorcontrib><description>It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ) and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA) receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050128</identifier><identifier>PMID: 23372643</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adenoviridae ; AKT protein ; Animals ; Biology ; Biomedical research ; Ca2+/calmodulin-dependent protein kinase II ; Calcium ; Calcium (intracellular) ; Calcium - metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Cell activation ; Cell growth ; Cell Line, Tumor ; Cholesterol ; Cyclic AMP response element-binding protein ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Diabetes ; Endocrinology ; Fatty acids ; Fatty Acids, Nonesterified - metabolism ; FOXO1 protein ; Gene expression ; Gene Expression Regulation - drug effects ; Genetic Vectors ; Glucose ; Glucose transporter ; Glucose Transporter Type 2 - genetics ; Glucose Transporter Type 2 - metabolism ; GLUT2 protein ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Homeostasis ; Insulin ; Insulin - metabolism ; Insulin Receptor Substrate Proteins - genetics ; Insulin Receptor Substrate Proteins - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; Insulin-Secreting Cells - pathology ; Insulinoma ; Interference ; Intracellular ; Intracellular signalling ; Kinases ; Male ; Medicine ; Metabolism ; Metabolites ; Pancreas ; Peroxisome proliferator-activated receptors ; Phosphorylation - drug effects ; PPAR gamma - agonists ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Programmable logic controllers ; Programmable logic devices ; Proteins ; Rats ; Rats, Inbred OLETF ; Receptors, G-Protein-Coupled - agonists ; Receptors, G-Protein-Coupled - antagonists &amp; inhibitors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Ribonucleic acid ; RNA ; RNA, Small Interfering - genetics ; RNA-mediated interference ; Rodents ; Rosiglitazone ; Signal transduction ; Signal Transduction - drug effects ; Thiazolidinediones - pharmacology ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Up-regulation</subject><ispartof>PloS one, 2013, Vol.8 (1), p.e50128</ispartof><rights>2013 Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Kim et al 2013 Kim et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-17774e5efd108c6332dedea7525a4452ef0ed6680b120178eab85b19318d89a73</citedby><cites>FETCH-LOGICAL-c526t-17774e5efd108c6332dedea7525a4452ef0ed6680b120178eab85b19318d89a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553172/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553172/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,4010,23845,27900,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23372643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sesti, Giorgio</contributor><creatorcontrib>Kim, Hyo-Sup</creatorcontrib><creatorcontrib>Hwang, You-Cheol</creatorcontrib><creatorcontrib>Koo, Seung-Hoi</creatorcontrib><creatorcontrib>Park, Kyong Soo</creatorcontrib><creatorcontrib>Lee, Myung-Shik</creatorcontrib><creatorcontrib>Kim, Kwang-Won</creatorcontrib><creatorcontrib>Lee, Moon-Kyu</creatorcontrib><title>PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ) and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA) receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.</description><subject>Activation</subject><subject>Adenoviridae</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomedical research</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium - metabolism</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Cell activation</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cholesterol</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Diabetes</subject><subject>Endocrinology</subject><subject>Fatty acids</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>FOXO1 protein</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genetic Vectors</subject><subject>Glucose</subject><subject>Glucose transporter</subject><subject>Glucose Transporter Type 2 - genetics</subject><subject>Glucose Transporter Type 2 - metabolism</subject><subject>GLUT2 protein</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Receptor Substrate Proteins - genetics</subject><subject>Insulin Receptor Substrate Proteins - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Insulinoma</subject><subject>Interference</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Pancreas</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phosphorylation - drug effects</subject><subject>PPAR gamma - agonists</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Programmable logic controllers</subject><subject>Programmable logic devices</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Inbred OLETF</subject><subject>Receptors, G-Protein-Coupled - agonists</subject><subject>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-mediated interference</subject><subject>Rodents</subject><subject>Rosiglitazone</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Up-regulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kttq3DAQhk1paQ7tG5TW0GtvdbAOvimE0CaBQJeQXAvZGu16USxXkgN5gLxQ-x55pmp3nZBc9EYjZv7_m2GYoviE0QJTgb9t_BQG7RajH2CBEEOYyDfFIW4oqThB9O2L_0FxFOMmi6jk_H1xQCgVhNf0sHhYLk-uqse_pe5Sf6dT74eyH7oAOkLMvzi5figj5MyultbBT6t1jlBOYxVgNbm9y9td0gbIj07pPiN7UwboYEw-lGfLqxplYjnqHT_1Xfn4p-rAufiheGe1i_BxjsfFzc8f16fn1eWvs4vTk8uqY4SnCgshamBgDUay45QSAwa0YITpumYELALDuUQtJggLCbqVrM1bwNLIRgt6XHzZc0fno5o3GBWmRMimQaLOiou9wni9UWPob3W4V173apfwYaV0yKM7UEhzawgjhllZW8SltQCklW2jW8tqklnf525TewumgyEF7V5BX1eGfq1W_k5RxigWW8DXGRD87wli-s_I9V7VBR9jAPvcASO1PZUnl9qeippPJds-v5zu2fR0G_Qfg9HANw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Kim, Hyo-Sup</creator><creator>Hwang, You-Cheol</creator><creator>Koo, Seung-Hoi</creator><creator>Park, Kyong Soo</creator><creator>Lee, Myung-Shik</creator><creator>Kim, Kwang-Won</creator><creator>Lee, Moon-Kyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells</title><author>Kim, Hyo-Sup ; Hwang, You-Cheol ; Koo, Seung-Hoi ; Park, Kyong Soo ; Lee, Myung-Shik ; Kim, Kwang-Won ; Lee, Moon-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-17774e5efd108c6332dedea7525a4452ef0ed6680b120178eab85b19318d89a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Adenoviridae</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomedical research</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium - metabolism</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Cell activation</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cholesterol</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Diabetes</topic><topic>Endocrinology</topic><topic>Fatty acids</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>FOXO1 protein</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genetic Vectors</topic><topic>Glucose</topic><topic>Glucose transporter</topic><topic>Glucose Transporter Type 2 - genetics</topic><topic>Glucose Transporter Type 2 - metabolism</topic><topic>GLUT2 protein</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Receptor Substrate Proteins - genetics</topic><topic>Insulin Receptor Substrate Proteins - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Insulinoma</topic><topic>Interference</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Pancreas</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phosphorylation - drug effects</topic><topic>PPAR gamma - agonists</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Programmable logic controllers</topic><topic>Programmable logic devices</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Inbred OLETF</topic><topic>Receptors, G-Protein-Coupled - agonists</topic><topic>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-mediated interference</topic><topic>Rodents</topic><topic>Rosiglitazone</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Up-regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyo-Sup</creatorcontrib><creatorcontrib>Hwang, You-Cheol</creatorcontrib><creatorcontrib>Koo, Seung-Hoi</creatorcontrib><creatorcontrib>Park, Kyong Soo</creatorcontrib><creatorcontrib>Lee, Myung-Shik</creatorcontrib><creatorcontrib>Kim, Kwang-Won</creatorcontrib><creatorcontrib>Lee, Moon-Kyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyo-Sup</au><au>Hwang, You-Cheol</au><au>Koo, Seung-Hoi</au><au>Park, Kyong Soo</au><au>Lee, Myung-Shik</au><au>Kim, Kwang-Won</au><au>Lee, Moon-Kyu</au><au>Sesti, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e50128</spage><pages>e50128-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ) and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA) receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23372643</pmid><doi>10.1371/journal.pone.0050128</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013, Vol.8 (1), p.e50128
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327899074
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Adenoviridae
AKT protein
Animals
Biology
Biomedical research
Ca2+/calmodulin-dependent protein kinase II
Calcium
Calcium (intracellular)
Calcium - metabolism
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism
Cell activation
Cell growth
Cell Line, Tumor
Cholesterol
Cyclic AMP response element-binding protein
Cyclic AMP Response Element-Binding Protein - genetics
Cyclic AMP Response Element-Binding Protein - metabolism
Diabetes
Endocrinology
Fatty acids
Fatty Acids, Nonesterified - metabolism
FOXO1 protein
Gene expression
Gene Expression Regulation - drug effects
Genetic Vectors
Glucose
Glucose transporter
Glucose Transporter Type 2 - genetics
Glucose Transporter Type 2 - metabolism
GLUT2 protein
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Homeostasis
Insulin
Insulin - metabolism
Insulin Receptor Substrate Proteins - genetics
Insulin Receptor Substrate Proteins - metabolism
Insulin Secretion
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
Insulin-Secreting Cells - pathology
Insulinoma
Interference
Intracellular
Intracellular signalling
Kinases
Male
Medicine
Metabolism
Metabolites
Pancreas
Peroxisome proliferator-activated receptors
Phosphorylation - drug effects
PPAR gamma - agonists
PPAR gamma - genetics
PPAR gamma - metabolism
Programmable logic controllers
Programmable logic devices
Proteins
Rats
Rats, Inbred OLETF
Receptors, G-Protein-Coupled - agonists
Receptors, G-Protein-Coupled - antagonists & inhibitors
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Ribonucleic acid
RNA
RNA, Small Interfering - genetics
RNA-mediated interference
Rodents
Rosiglitazone
Signal transduction
Signal Transduction - drug effects
Thiazolidinediones - pharmacology
Trans-Activators - genetics
Trans-Activators - metabolism
Up-regulation
title PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PPAR-%CE%B3%20activation%20increases%20insulin%20secretion%20through%20the%20up-regulation%20of%20the%20free%20fatty%20acid%20receptor%20GPR40%20in%20pancreatic%20%CE%B2-cells&rft.jtitle=PloS%20one&rft.au=Kim,%20Hyo-Sup&rft.date=2013&rft.volume=8&rft.issue=1&rft.spage=e50128&rft.pages=e50128-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050128&rft_dat=%3Cproquest_plos_%3E2946342011%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327899074&rft_id=info:pmid/23372643&rft_doaj_id=oai_doaj_org_article_0a6fd252d5f84f068ffee2b8b9abf542&rfr_iscdi=true