Ancient evolutionary trade-offs between yeast ploidy states

The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-03, Vol.9 (3), p.e1003388
Hauptverfasser: Zörgö, Enikö, Chwialkowska, Karolina, Gjuvsland, Arne B, Garré, Elena, Sunnerhagen, Per, Liti, Gianni, Blomberg, Anders, Omholt, Stig W, Warringer, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e1003388
container_title PLoS genetics
container_volume 9
creator Zörgö, Enikö
Chwialkowska, Karolina
Gjuvsland, Arne B
Garré, Elena
Sunnerhagen, Per
Liti, Gianni
Blomberg, Anders
Omholt, Stig W
Warringer, Jonas
description The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.
doi_str_mv 10.1371/journal.pgen.1003388
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327764134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A326505726</galeid><doaj_id>oai_doaj_org_article_59a92d5e36974892af026a17980b978d</doaj_id><sourcerecordid>A326505726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QLguBFx3w2DQvCsPgxsLjg1204TZNOh05TmnTX-fdmbHeZ3ulNEk6e856TkzdJXmK0wlTg9zs3Dh20q7423QojRGlRPErOMec0Ewyxxyfns-SZ97vI8EKKp8kZoZxzIsV5crnudGO6kJpb146hcR0MhzQMUJnMWevT0oQ7Y7r0YMCHtG9dUx1SHyAY_zx5YqH15sW8XyQ_P338cfUlu775vLlaX2c6lyLEVWiEuEY5iIqWxkomSVVYnVPQrMIl8MJyAyUpMdbMVohZzmWFCgaYCUIvkteTbqzu1fxurzAlQuQMUxaJzURUDnaqH5p9fIVy0Ki_ATfUCobQ6NYoLiFW54bG3lghCVhEcsBCFqiUoqiiVjZp-TvTj-VCrR57FUP1qLxRWOQcHWt_mLsby72pdBzmAO0ibXnTNVtVu1tFc8QRF1HgzSRQQ-yv6ayLmN43Xqs1JfmRIXmk3i0o7bpgfocaRu_V5vu3_2C__jt782vJvj1htwbasPWzbfwSZBOoB-f9YOzDODBSR_fe_6I6ulfN7o1pr05H-ZB0b1f6B5QO6ms</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ancient evolutionary trade-offs between yeast ploidy states</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</creator><creatorcontrib>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</creatorcontrib><description>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003388</identifier><identifier>PMID: 23555297</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1994 ; Biological Evolution ; Biology ; cell ; Cell Size - drug effects ; Chromosomes ; Chromosomes - drug effects ; Chromosomes - genetics ; Copper - toxicity ; Diploidy ; duplication ; Ecology ; Evolution, Molecular ; Evolutionary Biology ; Evolutionary genetics ; Evolutionsbiologi ; fitness ; Gene-Environment Interaction ; gene-expression ; Genes, Mating Type, Fungal - drug effects ; Genes, Mating Type, Fungal - genetics ; Genetic aspects ; Genetics ; Genetics and Genomics ; Genetik och genomik ; Genotype ; Haploidy ; Health aspects ; Lithium - toxicity ; mating-type ; Microbial genetics ; Microbiology ; Mutation ; mutations ; p1475 ; Physiological aspects ; population genomics ; r ha ; Reproduction - drug effects ; Reproduction - genetics ; Saccharomyces cerevisiae - genetics ; saccharomyces-cerevisiae ; v136 ; Yeast ; Yeast fungi</subject><ispartof>PLoS genetics, 2013-03, Vol.9 (3), p.e1003388</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Zörgö et al 2013 Zörgö et al</rights><rights>2013 Zörgö et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zörgö E, Chwialkowska K, Gjuvsland AB, Garré E, Sunnerhagen P, et al. (2013) Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS Genet 9(3): e1003388. doi:10.1371/journal.pgen.1003388</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</citedby><cites>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23555297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/176504$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zörgö, Enikö</creatorcontrib><creatorcontrib>Chwialkowska, Karolina</creatorcontrib><creatorcontrib>Gjuvsland, Arne B</creatorcontrib><creatorcontrib>Garré, Elena</creatorcontrib><creatorcontrib>Sunnerhagen, Per</creatorcontrib><creatorcontrib>Liti, Gianni</creatorcontrib><creatorcontrib>Blomberg, Anders</creatorcontrib><creatorcontrib>Omholt, Stig W</creatorcontrib><creatorcontrib>Warringer, Jonas</creatorcontrib><title>Ancient evolutionary trade-offs between yeast ploidy states</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</description><subject>1994</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>cell</subject><subject>Cell Size - drug effects</subject><subject>Chromosomes</subject><subject>Chromosomes - drug effects</subject><subject>Chromosomes - genetics</subject><subject>Copper - toxicity</subject><subject>Diploidy</subject><subject>duplication</subject><subject>Ecology</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Evolutionary genetics</subject><subject>Evolutionsbiologi</subject><subject>fitness</subject><subject>Gene-Environment Interaction</subject><subject>gene-expression</subject><subject>Genes, Mating Type, Fungal - drug effects</subject><subject>Genes, Mating Type, Fungal - genetics</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>Genetik och genomik</subject><subject>Genotype</subject><subject>Haploidy</subject><subject>Health aspects</subject><subject>Lithium - toxicity</subject><subject>mating-type</subject><subject>Microbial genetics</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>mutations</subject><subject>p1475</subject><subject>Physiological aspects</subject><subject>population genomics</subject><subject>r ha</subject><subject>Reproduction - drug effects</subject><subject>Reproduction - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>saccharomyces-cerevisiae</subject><subject>v136</subject><subject>Yeast</subject><subject>Yeast fungi</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QLguBFx3w2DQvCsPgxsLjg1204TZNOh05TmnTX-fdmbHeZ3ulNEk6e856TkzdJXmK0wlTg9zs3Dh20q7423QojRGlRPErOMec0Ewyxxyfns-SZ97vI8EKKp8kZoZxzIsV5crnudGO6kJpb146hcR0MhzQMUJnMWevT0oQ7Y7r0YMCHtG9dUx1SHyAY_zx5YqH15sW8XyQ_P338cfUlu775vLlaX2c6lyLEVWiEuEY5iIqWxkomSVVYnVPQrMIl8MJyAyUpMdbMVohZzmWFCgaYCUIvkteTbqzu1fxurzAlQuQMUxaJzURUDnaqH5p9fIVy0Ki_ATfUCobQ6NYoLiFW54bG3lghCVhEcsBCFqiUoqiiVjZp-TvTj-VCrR57FUP1qLxRWOQcHWt_mLsby72pdBzmAO0ibXnTNVtVu1tFc8QRF1HgzSRQQ-yv6ayLmN43Xqs1JfmRIXmk3i0o7bpgfocaRu_V5vu3_2C__jt782vJvj1htwbasPWzbfwSZBOoB-f9YOzDODBSR_fe_6I6ulfN7o1pr05H-ZB0b1f6B5QO6ms</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Zörgö, Enikö</creator><creator>Chwialkowska, Karolina</creator><creator>Gjuvsland, Arne B</creator><creator>Garré, Elena</creator><creator>Sunnerhagen, Per</creator><creator>Liti, Gianni</creator><creator>Blomberg, Anders</creator><creator>Omholt, Stig W</creator><creator>Warringer, Jonas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>AAOVB</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1U</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20130301</creationdate><title>Ancient evolutionary trade-offs between yeast ploidy states</title><author>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1994</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>cell</topic><topic>Cell Size - drug effects</topic><topic>Chromosomes</topic><topic>Chromosomes - drug effects</topic><topic>Chromosomes - genetics</topic><topic>Copper - toxicity</topic><topic>Diploidy</topic><topic>duplication</topic><topic>Ecology</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Evolutionary genetics</topic><topic>Evolutionsbiologi</topic><topic>fitness</topic><topic>Gene-Environment Interaction</topic><topic>gene-expression</topic><topic>Genes, Mating Type, Fungal - drug effects</topic><topic>Genes, Mating Type, Fungal - genetics</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>Genetik och genomik</topic><topic>Genotype</topic><topic>Haploidy</topic><topic>Health aspects</topic><topic>Lithium - toxicity</topic><topic>mating-type</topic><topic>Microbial genetics</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>mutations</topic><topic>p1475</topic><topic>Physiological aspects</topic><topic>population genomics</topic><topic>r ha</topic><topic>Reproduction - drug effects</topic><topic>Reproduction - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>saccharomyces-cerevisiae</topic><topic>v136</topic><topic>Yeast</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zörgö, Enikö</creatorcontrib><creatorcontrib>Chwialkowska, Karolina</creatorcontrib><creatorcontrib>Gjuvsland, Arne B</creatorcontrib><creatorcontrib>Garré, Elena</creatorcontrib><creatorcontrib>Sunnerhagen, Per</creatorcontrib><creatorcontrib>Liti, Gianni</creatorcontrib><creatorcontrib>Blomberg, Anders</creatorcontrib><creatorcontrib>Omholt, Stig W</creatorcontrib><creatorcontrib>Warringer, Jonas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Göteborgs universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zörgö, Enikö</au><au>Chwialkowska, Karolina</au><au>Gjuvsland, Arne B</au><au>Garré, Elena</au><au>Sunnerhagen, Per</au><au>Liti, Gianni</au><au>Blomberg, Anders</au><au>Omholt, Stig W</au><au>Warringer, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancient evolutionary trade-offs between yeast ploidy states</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>9</volume><issue>3</issue><spage>e1003388</spage><pages>e1003388-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23555297</pmid><doi>10.1371/journal.pgen.1003388</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-03, Vol.9 (3), p.e1003388
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1327764134
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online
subjects 1994
Biological Evolution
Biology
cell
Cell Size - drug effects
Chromosomes
Chromosomes - drug effects
Chromosomes - genetics
Copper - toxicity
Diploidy
duplication
Ecology
Evolution, Molecular
Evolutionary Biology
Evolutionary genetics
Evolutionsbiologi
fitness
Gene-Environment Interaction
gene-expression
Genes, Mating Type, Fungal - drug effects
Genes, Mating Type, Fungal - genetics
Genetic aspects
Genetics
Genetics and Genomics
Genetik och genomik
Genotype
Haploidy
Health aspects
Lithium - toxicity
mating-type
Microbial genetics
Microbiology
Mutation
mutations
p1475
Physiological aspects
population genomics
r ha
Reproduction - drug effects
Reproduction - genetics
Saccharomyces cerevisiae - genetics
saccharomyces-cerevisiae
v136
Yeast
Yeast fungi
title Ancient evolutionary trade-offs between yeast ploidy states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T09%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancient%20evolutionary%20trade-offs%20between%20yeast%20ploidy%20states&rft.jtitle=PLoS%20genetics&rft.au=Z%C3%B6rg%C3%B6,%20Enik%C3%B6&rft.date=2013-03-01&rft.volume=9&rft.issue=3&rft.spage=e1003388&rft.pages=e1003388-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003388&rft_dat=%3Cgale_plos_%3EA326505726%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23555297&rft_galeid=A326505726&rft_doaj_id=oai_doaj_org_article_59a92d5e36974892af026a17980b978d&rfr_iscdi=true