Ancient evolutionary trade-offs between yeast ploidy states
The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces pa...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-03, Vol.9 (3), p.e1003388 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1003388 |
container_title | PLoS genetics |
container_volume | 9 |
creator | Zörgö, Enikö Chwialkowska, Karolina Gjuvsland, Arne B Garré, Elena Sunnerhagen, Per Liti, Gianni Blomberg, Anders Omholt, Stig W Warringer, Jonas |
description | The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots. |
doi_str_mv | 10.1371/journal.pgen.1003388 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327764134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A326505726</galeid><doaj_id>oai_doaj_org_article_59a92d5e36974892af026a17980b978d</doaj_id><sourcerecordid>A326505726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QLguBFx3w2DQvCsPgxsLjg1204TZNOh05TmnTX-fdmbHeZ3ulNEk6e856TkzdJXmK0wlTg9zs3Dh20q7423QojRGlRPErOMec0Ewyxxyfns-SZ97vI8EKKp8kZoZxzIsV5crnudGO6kJpb146hcR0MhzQMUJnMWevT0oQ7Y7r0YMCHtG9dUx1SHyAY_zx5YqH15sW8XyQ_P338cfUlu775vLlaX2c6lyLEVWiEuEY5iIqWxkomSVVYnVPQrMIl8MJyAyUpMdbMVohZzmWFCgaYCUIvkteTbqzu1fxurzAlQuQMUxaJzURUDnaqH5p9fIVy0Ki_ATfUCobQ6NYoLiFW54bG3lghCVhEcsBCFqiUoqiiVjZp-TvTj-VCrR57FUP1qLxRWOQcHWt_mLsby72pdBzmAO0ibXnTNVtVu1tFc8QRF1HgzSRQQ-yv6ayLmN43Xqs1JfmRIXmk3i0o7bpgfocaRu_V5vu3_2C__jt782vJvj1htwbasPWzbfwSZBOoB-f9YOzDODBSR_fe_6I6ulfN7o1pr05H-ZB0b1f6B5QO6ms</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ancient evolutionary trade-offs between yeast ploidy states</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</creator><creatorcontrib>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</creatorcontrib><description>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003388</identifier><identifier>PMID: 23555297</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1994 ; Biological Evolution ; Biology ; cell ; Cell Size - drug effects ; Chromosomes ; Chromosomes - drug effects ; Chromosomes - genetics ; Copper - toxicity ; Diploidy ; duplication ; Ecology ; Evolution, Molecular ; Evolutionary Biology ; Evolutionary genetics ; Evolutionsbiologi ; fitness ; Gene-Environment Interaction ; gene-expression ; Genes, Mating Type, Fungal - drug effects ; Genes, Mating Type, Fungal - genetics ; Genetic aspects ; Genetics ; Genetics and Genomics ; Genetik och genomik ; Genotype ; Haploidy ; Health aspects ; Lithium - toxicity ; mating-type ; Microbial genetics ; Microbiology ; Mutation ; mutations ; p1475 ; Physiological aspects ; population genomics ; r ha ; Reproduction - drug effects ; Reproduction - genetics ; Saccharomyces cerevisiae - genetics ; saccharomyces-cerevisiae ; v136 ; Yeast ; Yeast fungi</subject><ispartof>PLoS genetics, 2013-03, Vol.9 (3), p.e1003388</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Zörgö et al 2013 Zörgö et al</rights><rights>2013 Zörgö et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zörgö E, Chwialkowska K, Gjuvsland AB, Garré E, Sunnerhagen P, et al. (2013) Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS Genet 9(3): e1003388. doi:10.1371/journal.pgen.1003388</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</citedby><cites>FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23555297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/176504$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zörgö, Enikö</creatorcontrib><creatorcontrib>Chwialkowska, Karolina</creatorcontrib><creatorcontrib>Gjuvsland, Arne B</creatorcontrib><creatorcontrib>Garré, Elena</creatorcontrib><creatorcontrib>Sunnerhagen, Per</creatorcontrib><creatorcontrib>Liti, Gianni</creatorcontrib><creatorcontrib>Blomberg, Anders</creatorcontrib><creatorcontrib>Omholt, Stig W</creatorcontrib><creatorcontrib>Warringer, Jonas</creatorcontrib><title>Ancient evolutionary trade-offs between yeast ploidy states</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</description><subject>1994</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>cell</subject><subject>Cell Size - drug effects</subject><subject>Chromosomes</subject><subject>Chromosomes - drug effects</subject><subject>Chromosomes - genetics</subject><subject>Copper - toxicity</subject><subject>Diploidy</subject><subject>duplication</subject><subject>Ecology</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Evolutionary genetics</subject><subject>Evolutionsbiologi</subject><subject>fitness</subject><subject>Gene-Environment Interaction</subject><subject>gene-expression</subject><subject>Genes, Mating Type, Fungal - drug effects</subject><subject>Genes, Mating Type, Fungal - genetics</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>Genetik och genomik</subject><subject>Genotype</subject><subject>Haploidy</subject><subject>Health aspects</subject><subject>Lithium - toxicity</subject><subject>mating-type</subject><subject>Microbial genetics</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>mutations</subject><subject>p1475</subject><subject>Physiological aspects</subject><subject>population genomics</subject><subject>r ha</subject><subject>Reproduction - drug effects</subject><subject>Reproduction - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>saccharomyces-cerevisiae</subject><subject>v136</subject><subject>Yeast</subject><subject>Yeast fungi</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QLguBFx3w2DQvCsPgxsLjg1204TZNOh05TmnTX-fdmbHeZ3ulNEk6e856TkzdJXmK0wlTg9zs3Dh20q7423QojRGlRPErOMec0Ewyxxyfns-SZ97vI8EKKp8kZoZxzIsV5crnudGO6kJpb146hcR0MhzQMUJnMWevT0oQ7Y7r0YMCHtG9dUx1SHyAY_zx5YqH15sW8XyQ_P338cfUlu775vLlaX2c6lyLEVWiEuEY5iIqWxkomSVVYnVPQrMIl8MJyAyUpMdbMVohZzmWFCgaYCUIvkteTbqzu1fxurzAlQuQMUxaJzURUDnaqH5p9fIVy0Ki_ATfUCobQ6NYoLiFW54bG3lghCVhEcsBCFqiUoqiiVjZp-TvTj-VCrR57FUP1qLxRWOQcHWt_mLsby72pdBzmAO0ibXnTNVtVu1tFc8QRF1HgzSRQQ-yv6ayLmN43Xqs1JfmRIXmk3i0o7bpgfocaRu_V5vu3_2C__jt782vJvj1htwbasPWzbfwSZBOoB-f9YOzDODBSR_fe_6I6ulfN7o1pr05H-ZB0b1f6B5QO6ms</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Zörgö, Enikö</creator><creator>Chwialkowska, Karolina</creator><creator>Gjuvsland, Arne B</creator><creator>Garré, Elena</creator><creator>Sunnerhagen, Per</creator><creator>Liti, Gianni</creator><creator>Blomberg, Anders</creator><creator>Omholt, Stig W</creator><creator>Warringer, Jonas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>AAOVB</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1U</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20130301</creationdate><title>Ancient evolutionary trade-offs between yeast ploidy states</title><author>Zörgö, Enikö ; Chwialkowska, Karolina ; Gjuvsland, Arne B ; Garré, Elena ; Sunnerhagen, Per ; Liti, Gianni ; Blomberg, Anders ; Omholt, Stig W ; Warringer, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-c67c005c06a7d3bef9492d8fc63ac4d1ba58f5eab2b11c4fd04f559d084a14723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1994</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>cell</topic><topic>Cell Size - drug effects</topic><topic>Chromosomes</topic><topic>Chromosomes - drug effects</topic><topic>Chromosomes - genetics</topic><topic>Copper - toxicity</topic><topic>Diploidy</topic><topic>duplication</topic><topic>Ecology</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Evolutionary genetics</topic><topic>Evolutionsbiologi</topic><topic>fitness</topic><topic>Gene-Environment Interaction</topic><topic>gene-expression</topic><topic>Genes, Mating Type, Fungal - drug effects</topic><topic>Genes, Mating Type, Fungal - genetics</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>Genetik och genomik</topic><topic>Genotype</topic><topic>Haploidy</topic><topic>Health aspects</topic><topic>Lithium - toxicity</topic><topic>mating-type</topic><topic>Microbial genetics</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>mutations</topic><topic>p1475</topic><topic>Physiological aspects</topic><topic>population genomics</topic><topic>r ha</topic><topic>Reproduction - drug effects</topic><topic>Reproduction - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>saccharomyces-cerevisiae</topic><topic>v136</topic><topic>Yeast</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zörgö, Enikö</creatorcontrib><creatorcontrib>Chwialkowska, Karolina</creatorcontrib><creatorcontrib>Gjuvsland, Arne B</creatorcontrib><creatorcontrib>Garré, Elena</creatorcontrib><creatorcontrib>Sunnerhagen, Per</creatorcontrib><creatorcontrib>Liti, Gianni</creatorcontrib><creatorcontrib>Blomberg, Anders</creatorcontrib><creatorcontrib>Omholt, Stig W</creatorcontrib><creatorcontrib>Warringer, Jonas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Göteborgs universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zörgö, Enikö</au><au>Chwialkowska, Karolina</au><au>Gjuvsland, Arne B</au><au>Garré, Elena</au><au>Sunnerhagen, Per</au><au>Liti, Gianni</au><au>Blomberg, Anders</au><au>Omholt, Stig W</au><au>Warringer, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancient evolutionary trade-offs between yeast ploidy states</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>9</volume><issue>3</issue><spage>e1003388</spage><pages>e1003388-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy-environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%-17% of ploidy-environment interactions. The mechanism of the cell size-based superior reproductive efficiency of haploids during Li(+) exposure was traced to the Li(+) exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li(+) tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23555297</pmid><doi>10.1371/journal.pgen.1003388</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2013-03, Vol.9 (3), p.e1003388 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1327764134 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online |
subjects | 1994 Biological Evolution Biology cell Cell Size - drug effects Chromosomes Chromosomes - drug effects Chromosomes - genetics Copper - toxicity Diploidy duplication Ecology Evolution, Molecular Evolutionary Biology Evolutionary genetics Evolutionsbiologi fitness Gene-Environment Interaction gene-expression Genes, Mating Type, Fungal - drug effects Genes, Mating Type, Fungal - genetics Genetic aspects Genetics Genetics and Genomics Genetik och genomik Genotype Haploidy Health aspects Lithium - toxicity mating-type Microbial genetics Microbiology Mutation mutations p1475 Physiological aspects population genomics r ha Reproduction - drug effects Reproduction - genetics Saccharomyces cerevisiae - genetics saccharomyces-cerevisiae v136 Yeast Yeast fungi |
title | Ancient evolutionary trade-offs between yeast ploidy states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T09%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancient%20evolutionary%20trade-offs%20between%20yeast%20ploidy%20states&rft.jtitle=PLoS%20genetics&rft.au=Z%C3%B6rg%C3%B6,%20Enik%C3%B6&rft.date=2013-03-01&rft.volume=9&rft.issue=3&rft.spage=e1003388&rft.pages=e1003388-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003388&rft_dat=%3Cgale_plos_%3EA326505726%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23555297&rft_galeid=A326505726&rft_doaj_id=oai_doaj_org_article_59a92d5e36974892af026a17980b978d&rfr_iscdi=true |