Multi-tissue microarray analysis identifies a molecular signature of regeneration
The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-12, Vol.7 (12), p.e52375-e52375 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e52375 |
---|---|
container_issue | 12 |
container_start_page | e52375 |
container_title | PloS one |
container_volume | 7 |
creator | Mercer, Sarah E Cheng, Chia-Ho Atkinson, Donald L Krcmery, Jennifer Guzman, Claudia E Kent, David T Zukor, Katherine Marx, Kenneth A Odelberg, Shannon J Simon, Hans-Georg |
description | The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine. |
doi_str_mv | 10.1371/journal.pone.0052375 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327218607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477041297</galeid><doaj_id>oai_doaj_org_article_b76d611a6820446692269f0b08a6b69f</doaj_id><sourcerecordid>A477041297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cd4632bc0585d2e00b15600fd3e257df75e2976bd3dbd2e889cb2d05ce24ae963</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlokvZGWBY_BlYWP29Dmpx2smSaMUnF-fdmnO4ylb2QXCQkz3mT8-YtiqcYLTEV-M21H8Og3HLrB1gixAgV7F5xihtKFpwgev9ofVI8ivE6Q7Tm_GFxQihFiDN-Wnz-NLpkF8nGOEK5sTp4FYLalSpr76KNpTUwJNtZiKUqN96BHp0KZbT9oNIYoPRdGaCHAYJK1g-PiwedchGeTPNZ8f39u28XHxeXVx9WF-eXC80bkhbaVJySViNWM0MAoRYzjlBnKBAmTCcYkEbw1lDT5vO6bnRLDGIaSKWg4fSseH7Q3Tof5eRGlJgSQXDNkcjE6kAYr67lNtiNCjvplZV_N3zopQrJageyFdxwjBWvCaoqnl9IeNOhFtWKt3mVtd5Ot43tBozOngTlZqLzk8GuZe9_ScooYhXNAq8mgeB_jhCT3NiowTk1gB_zu4mgNFuC9529-Ae9u7uJ6lVuwA6dz_fqvag8r4RAFc7-ZWp5B5WHgfzZOTqdzfuzgtezgswk-J16NcYoV1-__D979WPOvjxi16BcWkfvxn1k4hysDmCOYowBuluTMZL75N-4IffJl1Pyc9mz4w-6LbqJOv0Dl1790w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327218607</pqid></control><display><type>article</type><title>Multi-tissue microarray analysis identifies a molecular signature of regeneration</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mercer, Sarah E ; Cheng, Chia-Ho ; Atkinson, Donald L ; Krcmery, Jennifer ; Guzman, Claudia E ; Kent, David T ; Zukor, Katherine ; Marx, Kenneth A ; Odelberg, Shannon J ; Simon, Hans-Georg</creator><contributor>Hurlin, Peter</contributor><creatorcontrib>Mercer, Sarah E ; Cheng, Chia-Ho ; Atkinson, Donald L ; Krcmery, Jennifer ; Guzman, Claudia E ; Kent, David T ; Zukor, Katherine ; Marx, Kenneth A ; Odelberg, Shannon J ; Simon, Hans-Georg ; Hurlin, Peter</creatorcontrib><description>The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0052375</identifier><identifier>PMID: 23300656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amphibia ; Amphibians ; Analysis ; Animals ; Appendages ; Bioinformatics ; Biology ; Brain research ; Cardiology ; Clustering ; Computer Science ; Cytoskeleton ; Cytoskeleton - metabolism ; DNA microarrays ; Extracellular matrix ; Gene expression ; Genes ; Genetic engineering ; Heart ; Immune response ; Immune system ; Immunity ; Internal medicine ; Matrix metalloproteinase ; Medicine ; Metalloproteinase ; MicroRNAs ; Neurogenesis ; Notophthalmus viridescens ; Notophthalmus viridescens - immunology ; Notophthalmus viridescens - physiology ; Organ Specificity ; Pediatrics ; Regeneration ; Regeneration (physiology) ; Regenerative medicine ; Regulators ; Reproducibility of Results ; Reptiles & amphibians ; Restoration ; Signal Transduction ; Spinal cord ; Stem cells ; Studies ; Tissue analysis ; Tissue Array Analysis ; Tissue engineering ; Zebrafish</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e52375-e52375</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Mercer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Mercer et al 2012 Mercer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cd4632bc0585d2e00b15600fd3e257df75e2976bd3dbd2e889cb2d05ce24ae963</citedby><cites>FETCH-LOGICAL-c692t-cd4632bc0585d2e00b15600fd3e257df75e2976bd3dbd2e889cb2d05ce24ae963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530543/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530543/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23300656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hurlin, Peter</contributor><creatorcontrib>Mercer, Sarah E</creatorcontrib><creatorcontrib>Cheng, Chia-Ho</creatorcontrib><creatorcontrib>Atkinson, Donald L</creatorcontrib><creatorcontrib>Krcmery, Jennifer</creatorcontrib><creatorcontrib>Guzman, Claudia E</creatorcontrib><creatorcontrib>Kent, David T</creatorcontrib><creatorcontrib>Zukor, Katherine</creatorcontrib><creatorcontrib>Marx, Kenneth A</creatorcontrib><creatorcontrib>Odelberg, Shannon J</creatorcontrib><creatorcontrib>Simon, Hans-Georg</creatorcontrib><title>Multi-tissue microarray analysis identifies a molecular signature of regeneration</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.</description><subject>Amphibia</subject><subject>Amphibians</subject><subject>Analysis</subject><subject>Animals</subject><subject>Appendages</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Brain research</subject><subject>Cardiology</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>DNA microarrays</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Heart</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Internal medicine</subject><subject>Matrix metalloproteinase</subject><subject>Medicine</subject><subject>Metalloproteinase</subject><subject>MicroRNAs</subject><subject>Neurogenesis</subject><subject>Notophthalmus viridescens</subject><subject>Notophthalmus viridescens - immunology</subject><subject>Notophthalmus viridescens - physiology</subject><subject>Organ Specificity</subject><subject>Pediatrics</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Regulators</subject><subject>Reproducibility of Results</subject><subject>Reptiles & amphibians</subject><subject>Restoration</subject><subject>Signal Transduction</subject><subject>Spinal cord</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue analysis</subject><subject>Tissue Array Analysis</subject><subject>Tissue engineering</subject><subject>Zebrafish</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlokvZGWBY_BlYWP29Dmpx2smSaMUnF-fdmnO4ylb2QXCQkz3mT8-YtiqcYLTEV-M21H8Og3HLrB1gixAgV7F5xihtKFpwgev9ofVI8ivE6Q7Tm_GFxQihFiDN-Wnz-NLpkF8nGOEK5sTp4FYLalSpr76KNpTUwJNtZiKUqN96BHp0KZbT9oNIYoPRdGaCHAYJK1g-PiwedchGeTPNZ8f39u28XHxeXVx9WF-eXC80bkhbaVJySViNWM0MAoRYzjlBnKBAmTCcYkEbw1lDT5vO6bnRLDGIaSKWg4fSseH7Q3Tof5eRGlJgSQXDNkcjE6kAYr67lNtiNCjvplZV_N3zopQrJageyFdxwjBWvCaoqnl9IeNOhFtWKt3mVtd5Ot43tBozOngTlZqLzk8GuZe9_ScooYhXNAq8mgeB_jhCT3NiowTk1gB_zu4mgNFuC9529-Ae9u7uJ6lVuwA6dz_fqvag8r4RAFc7-ZWp5B5WHgfzZOTqdzfuzgtezgswk-J16NcYoV1-__D979WPOvjxi16BcWkfvxn1k4hysDmCOYowBuluTMZL75N-4IffJl1Pyc9mz4w-6LbqJOv0Dl1790w</recordid><startdate>20121226</startdate><enddate>20121226</enddate><creator>Mercer, Sarah E</creator><creator>Cheng, Chia-Ho</creator><creator>Atkinson, Donald L</creator><creator>Krcmery, Jennifer</creator><creator>Guzman, Claudia E</creator><creator>Kent, David T</creator><creator>Zukor, Katherine</creator><creator>Marx, Kenneth A</creator><creator>Odelberg, Shannon J</creator><creator>Simon, Hans-Georg</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121226</creationdate><title>Multi-tissue microarray analysis identifies a molecular signature of regeneration</title><author>Mercer, Sarah E ; Cheng, Chia-Ho ; Atkinson, Donald L ; Krcmery, Jennifer ; Guzman, Claudia E ; Kent, David T ; Zukor, Katherine ; Marx, Kenneth A ; Odelberg, Shannon J ; Simon, Hans-Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cd4632bc0585d2e00b15600fd3e257df75e2976bd3dbd2e889cb2d05ce24ae963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amphibia</topic><topic>Amphibians</topic><topic>Analysis</topic><topic>Animals</topic><topic>Appendages</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Brain research</topic><topic>Cardiology</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>DNA microarrays</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Heart</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Internal medicine</topic><topic>Matrix metalloproteinase</topic><topic>Medicine</topic><topic>Metalloproteinase</topic><topic>MicroRNAs</topic><topic>Neurogenesis</topic><topic>Notophthalmus viridescens</topic><topic>Notophthalmus viridescens - immunology</topic><topic>Notophthalmus viridescens - physiology</topic><topic>Organ Specificity</topic><topic>Pediatrics</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Regulators</topic><topic>Reproducibility of Results</topic><topic>Reptiles & amphibians</topic><topic>Restoration</topic><topic>Signal Transduction</topic><topic>Spinal cord</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue analysis</topic><topic>Tissue Array Analysis</topic><topic>Tissue engineering</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mercer, Sarah E</creatorcontrib><creatorcontrib>Cheng, Chia-Ho</creatorcontrib><creatorcontrib>Atkinson, Donald L</creatorcontrib><creatorcontrib>Krcmery, Jennifer</creatorcontrib><creatorcontrib>Guzman, Claudia E</creatorcontrib><creatorcontrib>Kent, David T</creatorcontrib><creatorcontrib>Zukor, Katherine</creatorcontrib><creatorcontrib>Marx, Kenneth A</creatorcontrib><creatorcontrib>Odelberg, Shannon J</creatorcontrib><creatorcontrib>Simon, Hans-Georg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mercer, Sarah E</au><au>Cheng, Chia-Ho</au><au>Atkinson, Donald L</au><au>Krcmery, Jennifer</au><au>Guzman, Claudia E</au><au>Kent, David T</au><au>Zukor, Katherine</au><au>Marx, Kenneth A</au><au>Odelberg, Shannon J</au><au>Simon, Hans-Georg</au><au>Hurlin, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-tissue microarray analysis identifies a molecular signature of regeneration</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-26</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e52375</spage><epage>e52375</epage><pages>e52375-e52375</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23300656</pmid><doi>10.1371/journal.pone.0052375</doi><tpages>e52375</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e52375-e52375 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327218607 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amphibia Amphibians Analysis Animals Appendages Bioinformatics Biology Brain research Cardiology Clustering Computer Science Cytoskeleton Cytoskeleton - metabolism DNA microarrays Extracellular matrix Gene expression Genes Genetic engineering Heart Immune response Immune system Immunity Internal medicine Matrix metalloproteinase Medicine Metalloproteinase MicroRNAs Neurogenesis Notophthalmus viridescens Notophthalmus viridescens - immunology Notophthalmus viridescens - physiology Organ Specificity Pediatrics Regeneration Regeneration (physiology) Regenerative medicine Regulators Reproducibility of Results Reptiles & amphibians Restoration Signal Transduction Spinal cord Stem cells Studies Tissue analysis Tissue Array Analysis Tissue engineering Zebrafish |
title | Multi-tissue microarray analysis identifies a molecular signature of regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-tissue%20microarray%20analysis%20identifies%20a%20molecular%20signature%20of%20regeneration&rft.jtitle=PloS%20one&rft.au=Mercer,%20Sarah%20E&rft.date=2012-12-26&rft.volume=7&rft.issue=12&rft.spage=e52375&rft.epage=e52375&rft.pages=e52375-e52375&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0052375&rft_dat=%3Cgale_plos_%3EA477041297%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327218607&rft_id=info:pmid/23300656&rft_galeid=A477041297&rft_doaj_id=oai_doaj_org_article_b76d611a6820446692269f0b08a6b69f&rfr_iscdi=true |