Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes

REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-12, Vol.7 (12), p.e52154-e52154
Hauptverfasser: Regazzetti, Claire, Dumas, Karine, Le Marchand-Brustel, Yannick, Peraldi, Pascal, Tanti, Jean-François, Giorgetti-Peraldi, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e52154
container_issue 12
container_start_page e52154
container_title PloS one
container_volume 7
creator Regazzetti, Claire
Dumas, Karine
Le Marchand-Brustel, Yannick
Peraldi, Pascal
Tanti, Jean-François
Giorgetti-Peraldi, Sophie
description REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.
doi_str_mv 10.1371/journal.pone.0052154
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327176396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477068031</galeid><doaj_id>oai_doaj_org_article_90d120c1fadd4297b6763bbc94a3f677</doaj_id><sourcerecordid>A477068031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-17cc081932903a8a2ec55cbfefc9fb53a85126626ec7d03e84a0feb83f5ed343</originalsourceid><addsrcrecordid>eNptUl1r3DAQNKWlSdP-g9Ia-pI83FUftmS_FI5c2gSOFkLehSytfQq25Vr2laN_vuueE3Ih8oPMamZ2d5go-kjJknJJv977sW91vex8C0tCUkbT5FV0SnPOFoIR_vrJ_0n0LoR7BPFMiLfRCeNMMjyn0d9bqMZaD2Bj18YWdlD7roF2iHVr4_XPVWx1oyuIewjYKUCIFzQ-v71ar-lF3PV-AOQZ3w69K8YBnwePSmGssRxchRO6too7PWz_6P3UQ1vXebNH6PvoTanrAB_m-yy6-351d3m92Pz6cXO52iyMYHJYUGkMyaZdcsJ1phmYNDVFCaXJyyLFUkqZEEyAkZZwyBJNSigyXqZgecLPos8H2a72Qc22BUXRAyoFzwUibg4I6_W96nrX6H6vvHbqf8H3ldL94EwNKieWMmJoqa1NWC4LgRJFYfJE81JIiVrf5m5j0YA1aGWv6yPR45fWbVXld4qnLE0FR4GLg8D2Ge16tVFTjRApKUnFjiL2fG7W-98jhEE1Lhioa92CH3FHJjEqguQMoV-eQV92YkZVGpd1belxRjOJqlUiJREZ4VPb5Qso_Cw0DrMApcP6ESE5EEzvQ-ihfFyMEjWl-WEYNaVZzWlG2qenXj6SHuLL_wHay_En</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327176396</pqid></control><display><type>article</type><title>Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Regazzetti, Claire ; Dumas, Karine ; Le Marchand-Brustel, Yannick ; Peraldi, Pascal ; Tanti, Jean-François ; Giorgetti-Peraldi, Sophie</creator><contributor>Alquier, Thierry</contributor><creatorcontrib>Regazzetti, Claire ; Dumas, Karine ; Le Marchand-Brustel, Yannick ; Peraldi, Pascal ; Tanti, Jean-François ; Giorgetti-Peraldi, Sophie ; Alquier, Thierry</creatorcontrib><description>REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0052154</identifier><identifier>PMID: 23272222</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3T3-L1 Cells ; Adipocytes ; Adipocytes - drug effects ; Adipocytes - metabolism ; Animals ; Biology ; Cancer ; Cell growth ; Deoxyribonucleic acid ; Development Biology ; Diabetes ; DNA ; DNA damage ; DNA repair ; Enzyme Activation ; Feedback loops ; Growth factors ; HEK293 Cells ; Humans ; Hypoxia ; Inhibition ; Insulin ; Insulin - metabolism ; Insulin - pharmacology ; Insulin resistance ; Kinases ; Life Sciences ; Ligases ; Lipogenesis ; MAP Kinase Signaling System - drug effects ; Medicine ; Mice ; Musculoskeletal system ; Negative feedback ; Obesity ; Phosphorylation ; Proteasome Endopeptidase Complex - metabolism ; Proteasomes ; Proteins ; Proteolysis ; Rapamycin ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; siRNA ; Transcription Factors - metabolism ; Type 2 diabetes ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e52154-e52154</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Regazzetti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Regazzetti et al 2012 Regazzetti et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-17cc081932903a8a2ec55cbfefc9fb53a85126626ec7d03e84a0feb83f5ed343</citedby><cites>FETCH-LOGICAL-c627t-17cc081932903a8a2ec55cbfefc9fb53a85126626ec7d03e84a0feb83f5ed343</cites><orcidid>0000-0003-1782-1318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23272222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00771056$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Alquier, Thierry</contributor><creatorcontrib>Regazzetti, Claire</creatorcontrib><creatorcontrib>Dumas, Karine</creatorcontrib><creatorcontrib>Le Marchand-Brustel, Yannick</creatorcontrib><creatorcontrib>Peraldi, Pascal</creatorcontrib><creatorcontrib>Tanti, Jean-François</creatorcontrib><creatorcontrib>Giorgetti-Peraldi, Sophie</creatorcontrib><title>Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.</description><subject>3T3-L1 Cells</subject><subject>Adipocytes</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Deoxyribonucleic acid</subject><subject>Development Biology</subject><subject>Diabetes</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Enzyme Activation</subject><subject>Feedback loops</subject><subject>Growth factors</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Lipogenesis</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medicine</subject><subject>Mice</subject><subject>Musculoskeletal system</subject><subject>Negative feedback</subject><subject>Obesity</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Transcription Factors - metabolism</subject><subject>Type 2 diabetes</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1r3DAQNKWlSdP-g9Ia-pI83FUftmS_FI5c2gSOFkLehSytfQq25Vr2laN_vuueE3Ih8oPMamZ2d5go-kjJknJJv977sW91vex8C0tCUkbT5FV0SnPOFoIR_vrJ_0n0LoR7BPFMiLfRCeNMMjyn0d9bqMZaD2Bj18YWdlD7roF2iHVr4_XPVWx1oyuIewjYKUCIFzQ-v71ar-lF3PV-AOQZ3w69K8YBnwePSmGssRxchRO6too7PWz_6P3UQ1vXebNH6PvoTanrAB_m-yy6-351d3m92Pz6cXO52iyMYHJYUGkMyaZdcsJ1phmYNDVFCaXJyyLFUkqZEEyAkZZwyBJNSigyXqZgecLPos8H2a72Qc22BUXRAyoFzwUibg4I6_W96nrX6H6vvHbqf8H3ldL94EwNKieWMmJoqa1NWC4LgRJFYfJE81JIiVrf5m5j0YA1aGWv6yPR45fWbVXld4qnLE0FR4GLg8D2Ge16tVFTjRApKUnFjiL2fG7W-98jhEE1Lhioa92CH3FHJjEqguQMoV-eQV92YkZVGpd1belxRjOJqlUiJREZ4VPb5Qso_Cw0DrMApcP6ESE5EEzvQ-ihfFyMEjWl-WEYNaVZzWlG2qenXj6SHuLL_wHay_En</recordid><startdate>20121218</startdate><enddate>20121218</enddate><creator>Regazzetti, Claire</creator><creator>Dumas, Karine</creator><creator>Le Marchand-Brustel, Yannick</creator><creator>Peraldi, Pascal</creator><creator>Tanti, Jean-François</creator><creator>Giorgetti-Peraldi, Sophie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1782-1318</orcidid></search><sort><creationdate>20121218</creationdate><title>Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes</title><author>Regazzetti, Claire ; Dumas, Karine ; Le Marchand-Brustel, Yannick ; Peraldi, Pascal ; Tanti, Jean-François ; Giorgetti-Peraldi, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-17cc081932903a8a2ec55cbfefc9fb53a85126626ec7d03e84a0feb83f5ed343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3T3-L1 Cells</topic><topic>Adipocytes</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Deoxyribonucleic acid</topic><topic>Development Biology</topic><topic>Diabetes</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Enzyme Activation</topic><topic>Feedback loops</topic><topic>Growth factors</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Lipogenesis</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medicine</topic><topic>Mice</topic><topic>Musculoskeletal system</topic><topic>Negative feedback</topic><topic>Obesity</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Transcription Factors - metabolism</topic><topic>Type 2 diabetes</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regazzetti, Claire</creatorcontrib><creatorcontrib>Dumas, Karine</creatorcontrib><creatorcontrib>Le Marchand-Brustel, Yannick</creatorcontrib><creatorcontrib>Peraldi, Pascal</creatorcontrib><creatorcontrib>Tanti, Jean-François</creatorcontrib><creatorcontrib>Giorgetti-Peraldi, Sophie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regazzetti, Claire</au><au>Dumas, Karine</au><au>Le Marchand-Brustel, Yannick</au><au>Peraldi, Pascal</au><au>Tanti, Jean-François</au><au>Giorgetti-Peraldi, Sophie</au><au>Alquier, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-18</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e52154</spage><epage>e52154</epage><pages>e52154-e52154</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23272222</pmid><doi>10.1371/journal.pone.0052154</doi><orcidid>https://orcid.org/0000-0003-1782-1318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-12, Vol.7 (12), p.e52154-e52154
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327176396
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 3T3-L1 Cells
Adipocytes
Adipocytes - drug effects
Adipocytes - metabolism
Animals
Biology
Cancer
Cell growth
Deoxyribonucleic acid
Development Biology
Diabetes
DNA
DNA damage
DNA repair
Enzyme Activation
Feedback loops
Growth factors
HEK293 Cells
Humans
Hypoxia
Inhibition
Insulin
Insulin - metabolism
Insulin - pharmacology
Insulin resistance
Kinases
Life Sciences
Ligases
Lipogenesis
MAP Kinase Signaling System - drug effects
Medicine
Mice
Musculoskeletal system
Negative feedback
Obesity
Phosphorylation
Proteasome Endopeptidase Complex - metabolism
Proteasomes
Proteins
Proteolysis
Rapamycin
Rodents
Signal transduction
Signal Transduction - drug effects
Signaling
siRNA
Transcription Factors - metabolism
Type 2 diabetes
Ubiquitin
Ubiquitin-protein ligase
title Regulated in development and DNA damage responses -1 (REDD1) protein contributes to insulin signaling pathway in adipocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulated%20in%20development%20and%20DNA%20damage%20responses%20-1%20(REDD1)%20protein%20contributes%20to%20insulin%20signaling%20pathway%20in%20adipocytes&rft.jtitle=PloS%20one&rft.au=Regazzetti,%20Claire&rft.date=2012-12-18&rft.volume=7&rft.issue=12&rft.spage=e52154&rft.epage=e52154&rft.pages=e52154-e52154&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0052154&rft_dat=%3Cgale_plos_%3EA477068031%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327176396&rft_id=info:pmid/23272222&rft_galeid=A477068031&rft_doaj_id=oai_doaj_org_article_90d120c1fadd4297b6763bbc94a3f677&rfr_iscdi=true