Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces
Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine b...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-12, Vol.7 (12), p.e52839-e52839 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e52839 |
---|---|
container_issue | 12 |
container_start_page | e52839 |
container_title | PloS one |
container_volume | 7 |
creator | Antonenko, Yuri N Horner, Andreas Pohl, Peter |
description | Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors. |
doi_str_mv | 10.1371/journal.pone.0052839 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327156056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477055745</galeid><doaj_id>oai_doaj_org_article_0ade6c6b1c74483aa4254375a478d822</doaj_id><sourcerecordid>A477055745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6H4gWBNGHXZukbdIX4ThOXTg48NdrSJPpbo602UtS8f57Z93esZV7sHlomXzmO813Mln2khQrwjj5cO3HMCi32vkBVkVRUcGaR9kpaRhd1rRgj4--T7JnMV4jxERdP81OKKOiIk1zmsULBzoFH5NKVivnbnM7mFGDyQPoMNrUw5By3-U99G1QA-Q72CVrICKYfK7dGBOEiPjNaAOGnd2oweQt6thhk6uUtz5t9zSETmmIz7MnnXIRXkzvRfbj08X38y_Ly6vP6_Ozy6WuG5qWyrRNW5W0EJow1XWcCS4oEAyz1nBWFCXvKKsFUGgFKzujTVE0-NBGUVWyRfb6oLtzPsrJrygJo5xUdVHVSKwPhPHqWu6C7VW4lV5Z-Tfgw0aqgL44kIUyUOu6JZqXpWBKlbQqGa9UyYURlKLWx6na2PZgNNoWlJuJzncGu5Ub_0sybB3H1iyyd5NA8DcjxCR7GzU4h6b7Ef-bckY41haIvvkHffh0E7VReAA7dB7r6r2oPCs5lqx4uS-7eoDCZaC3Gi9XZzE-S3g_S0Amwe-0UWOMcv3t6_-zVz_n7NsjdgvKpW30bkzWD3EOlgdQ472NAbp7k0kh97Nx54bcz4acZgPTXh036D7pbhjYH4KvCvE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327156056</pqid></control><display><type>article</type><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter</creator><contributor>Muller, Daniel J.</contributor><creatorcontrib>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter ; Muller, Daniel J.</creatorcontrib><description>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0052839</identifier><identifier>PMID: 23285199</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding ; Biology ; Clustering ; Dimerization ; Dimers ; Electrostatic properties ; Experiments ; G protein-coupled receptors ; Gramicidin - analogs & derivatives ; Gramicidin - chemistry ; Gramicidin - metabolism ; Interfaces ; L-lysine ; Ligands ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Lysine ; Membrane lipids ; Membrane proteins ; Membranes ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Physics ; Poly-L-lysine ; Polylysine - chemistry ; Polylysine - metabolism ; Protein Binding ; Proteins ; Receptors ; Recruitment ; Signaling ; Static Electricity</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e52839-e52839</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Antonenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Antonenko et al 2012 Antonenko et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</citedby><cites>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528705/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528705/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23285199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Muller, Daniel J.</contributor><creatorcontrib>Antonenko, Yuri N</creatorcontrib><creatorcontrib>Horner, Andreas</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</description><subject>Binding</subject><subject>Biology</subject><subject>Clustering</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electrostatic properties</subject><subject>Experiments</subject><subject>G protein-coupled receptors</subject><subject>Gramicidin - analogs & derivatives</subject><subject>Gramicidin - chemistry</subject><subject>Gramicidin - metabolism</subject><subject>Interfaces</subject><subject>L-lysine</subject><subject>Ligands</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Membrane lipids</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Physics</subject><subject>Poly-L-lysine</subject><subject>Polylysine - chemistry</subject><subject>Polylysine - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Recruitment</subject><subject>Signaling</subject><subject>Static Electricity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6H4gWBNGHXZukbdIX4ThOXTg48NdrSJPpbo602UtS8f57Z93esZV7sHlomXzmO813Mln2khQrwjj5cO3HMCi32vkBVkVRUcGaR9kpaRhd1rRgj4--T7JnMV4jxERdP81OKKOiIk1zmsULBzoFH5NKVivnbnM7mFGDyQPoMNrUw5By3-U99G1QA-Q72CVrICKYfK7dGBOEiPjNaAOGnd2oweQt6thhk6uUtz5t9zSETmmIz7MnnXIRXkzvRfbj08X38y_Ly6vP6_Ozy6WuG5qWyrRNW5W0EJow1XWcCS4oEAyz1nBWFCXvKKsFUGgFKzujTVE0-NBGUVWyRfb6oLtzPsrJrygJo5xUdVHVSKwPhPHqWu6C7VW4lV5Z-Tfgw0aqgL44kIUyUOu6JZqXpWBKlbQqGa9UyYURlKLWx6na2PZgNNoWlJuJzncGu5Ub_0sybB3H1iyyd5NA8DcjxCR7GzU4h6b7Ef-bckY41haIvvkHffh0E7VReAA7dB7r6r2oPCs5lqx4uS-7eoDCZaC3Gi9XZzE-S3g_S0Amwe-0UWOMcv3t6_-zVz_n7NsjdgvKpW30bkzWD3EOlgdQ472NAbp7k0kh97Nx54bcz4acZgPTXh036D7pbhjYH4KvCvE</recordid><startdate>20121221</startdate><enddate>20121221</enddate><creator>Antonenko, Yuri N</creator><creator>Horner, Andreas</creator><creator>Pohl, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121221</creationdate><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><author>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Binding</topic><topic>Biology</topic><topic>Clustering</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electrostatic properties</topic><topic>Experiments</topic><topic>G protein-coupled receptors</topic><topic>Gramicidin - analogs & derivatives</topic><topic>Gramicidin - chemistry</topic><topic>Gramicidin - metabolism</topic><topic>Interfaces</topic><topic>L-lysine</topic><topic>Ligands</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Membrane lipids</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Physics</topic><topic>Poly-L-lysine</topic><topic>Polylysine - chemistry</topic><topic>Polylysine - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Recruitment</topic><topic>Signaling</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonenko, Yuri N</creatorcontrib><creatorcontrib>Horner, Andreas</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonenko, Yuri N</au><au>Horner, Andreas</au><au>Pohl, Peter</au><au>Muller, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-21</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e52839</spage><epage>e52839</epage><pages>e52839-e52839</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23285199</pmid><doi>10.1371/journal.pone.0052839</doi><tpages>e52839</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e52839-e52839 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327156056 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding Biology Clustering Dimerization Dimers Electrostatic properties Experiments G protein-coupled receptors Gramicidin - analogs & derivatives Gramicidin - chemistry Gramicidin - metabolism Interfaces L-lysine Ligands Lipid Bilayers - chemistry Lipid Bilayers - metabolism Lipids Lysine Membrane lipids Membrane proteins Membranes Peptides Peptides - chemistry Peptides - metabolism Physics Poly-L-lysine Polylysine - chemistry Polylysine - metabolism Protein Binding Proteins Receptors Recruitment Signaling Static Electricity |
title | Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatically%20induced%20recruitment%20of%20membrane%20peptides%20into%20clusters%20requires%20ligand%20binding%20at%20both%20interfaces&rft.jtitle=PloS%20one&rft.au=Antonenko,%20Yuri%20N&rft.date=2012-12-21&rft.volume=7&rft.issue=12&rft.spage=e52839&rft.epage=e52839&rft.pages=e52839-e52839&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0052839&rft_dat=%3Cgale_plos_%3EA477055745%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327156056&rft_id=info:pmid/23285199&rft_galeid=A477055745&rft_doaj_id=oai_doaj_org_article_0ade6c6b1c74483aa4254375a478d822&rfr_iscdi=true |