Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces

Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-12, Vol.7 (12), p.e52839-e52839
Hauptverfasser: Antonenko, Yuri N, Horner, Andreas, Pohl, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e52839
container_issue 12
container_start_page e52839
container_title PloS one
container_volume 7
creator Antonenko, Yuri N
Horner, Andreas
Pohl, Peter
description Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.
doi_str_mv 10.1371/journal.pone.0052839
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327156056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477055745</galeid><doaj_id>oai_doaj_org_article_0ade6c6b1c74483aa4254375a478d822</doaj_id><sourcerecordid>A477055745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6H4gWBNGHXZukbdIX4ThOXTg48NdrSJPpbo602UtS8f57Z93esZV7sHlomXzmO813Mln2khQrwjj5cO3HMCi32vkBVkVRUcGaR9kpaRhd1rRgj4--T7JnMV4jxERdP81OKKOiIk1zmsULBzoFH5NKVivnbnM7mFGDyQPoMNrUw5By3-U99G1QA-Q72CVrICKYfK7dGBOEiPjNaAOGnd2oweQt6thhk6uUtz5t9zSETmmIz7MnnXIRXkzvRfbj08X38y_Ly6vP6_Ozy6WuG5qWyrRNW5W0EJow1XWcCS4oEAyz1nBWFCXvKKsFUGgFKzujTVE0-NBGUVWyRfb6oLtzPsrJrygJo5xUdVHVSKwPhPHqWu6C7VW4lV5Z-Tfgw0aqgL44kIUyUOu6JZqXpWBKlbQqGa9UyYURlKLWx6na2PZgNNoWlJuJzncGu5Ub_0sybB3H1iyyd5NA8DcjxCR7GzU4h6b7Ef-bckY41haIvvkHffh0E7VReAA7dB7r6r2oPCs5lqx4uS-7eoDCZaC3Gi9XZzE-S3g_S0Amwe-0UWOMcv3t6_-zVz_n7NsjdgvKpW30bkzWD3EOlgdQ472NAbp7k0kh97Nx54bcz4acZgPTXh036D7pbhjYH4KvCvE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327156056</pqid></control><display><type>article</type><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter</creator><contributor>Muller, Daniel J.</contributor><creatorcontrib>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter ; Muller, Daniel J.</creatorcontrib><description>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0052839</identifier><identifier>PMID: 23285199</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding ; Biology ; Clustering ; Dimerization ; Dimers ; Electrostatic properties ; Experiments ; G protein-coupled receptors ; Gramicidin - analogs &amp; derivatives ; Gramicidin - chemistry ; Gramicidin - metabolism ; Interfaces ; L-lysine ; Ligands ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Lysine ; Membrane lipids ; Membrane proteins ; Membranes ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Physics ; Poly-L-lysine ; Polylysine - chemistry ; Polylysine - metabolism ; Protein Binding ; Proteins ; Receptors ; Recruitment ; Signaling ; Static Electricity</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e52839-e52839</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Antonenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Antonenko et al 2012 Antonenko et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</citedby><cites>FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528705/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528705/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23285199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Muller, Daniel J.</contributor><creatorcontrib>Antonenko, Yuri N</creatorcontrib><creatorcontrib>Horner, Andreas</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</description><subject>Binding</subject><subject>Biology</subject><subject>Clustering</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electrostatic properties</subject><subject>Experiments</subject><subject>G protein-coupled receptors</subject><subject>Gramicidin - analogs &amp; derivatives</subject><subject>Gramicidin - chemistry</subject><subject>Gramicidin - metabolism</subject><subject>Interfaces</subject><subject>L-lysine</subject><subject>Ligands</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Membrane lipids</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Physics</subject><subject>Poly-L-lysine</subject><subject>Polylysine - chemistry</subject><subject>Polylysine - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Recruitment</subject><subject>Signaling</subject><subject>Static Electricity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6H4gWBNGHXZukbdIX4ThOXTg48NdrSJPpbo602UtS8f57Z93esZV7sHlomXzmO813Mln2khQrwjj5cO3HMCi32vkBVkVRUcGaR9kpaRhd1rRgj4--T7JnMV4jxERdP81OKKOiIk1zmsULBzoFH5NKVivnbnM7mFGDyQPoMNrUw5By3-U99G1QA-Q72CVrICKYfK7dGBOEiPjNaAOGnd2oweQt6thhk6uUtz5t9zSETmmIz7MnnXIRXkzvRfbj08X38y_Ly6vP6_Ozy6WuG5qWyrRNW5W0EJow1XWcCS4oEAyz1nBWFCXvKKsFUGgFKzujTVE0-NBGUVWyRfb6oLtzPsrJrygJo5xUdVHVSKwPhPHqWu6C7VW4lV5Z-Tfgw0aqgL44kIUyUOu6JZqXpWBKlbQqGa9UyYURlKLWx6na2PZgNNoWlJuJzncGu5Ub_0sybB3H1iyyd5NA8DcjxCR7GzU4h6b7Ef-bckY41haIvvkHffh0E7VReAA7dB7r6r2oPCs5lqx4uS-7eoDCZaC3Gi9XZzE-S3g_S0Amwe-0UWOMcv3t6_-zVz_n7NsjdgvKpW30bkzWD3EOlgdQ472NAbp7k0kh97Nx54bcz4acZgPTXh036D7pbhjYH4KvCvE</recordid><startdate>20121221</startdate><enddate>20121221</enddate><creator>Antonenko, Yuri N</creator><creator>Horner, Andreas</creator><creator>Pohl, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121221</creationdate><title>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</title><author>Antonenko, Yuri N ; Horner, Andreas ; Pohl, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-adb9b54208c13aff738782e1db93bd730047f2368e2eb834fdcd00999929a2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Binding</topic><topic>Biology</topic><topic>Clustering</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electrostatic properties</topic><topic>Experiments</topic><topic>G protein-coupled receptors</topic><topic>Gramicidin - analogs &amp; derivatives</topic><topic>Gramicidin - chemistry</topic><topic>Gramicidin - metabolism</topic><topic>Interfaces</topic><topic>L-lysine</topic><topic>Ligands</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Membrane lipids</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Physics</topic><topic>Poly-L-lysine</topic><topic>Polylysine - chemistry</topic><topic>Polylysine - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Recruitment</topic><topic>Signaling</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonenko, Yuri N</creatorcontrib><creatorcontrib>Horner, Andreas</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonenko, Yuri N</au><au>Horner, Andreas</au><au>Pohl, Peter</au><au>Muller, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-21</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e52839</spage><epage>e52839</epage><pages>e52839-e52839</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility D(PLL) and (ii) by an increased lifetime τ(PLL) of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL) nor τ(P) changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23285199</pmid><doi>10.1371/journal.pone.0052839</doi><tpages>e52839</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-12, Vol.7 (12), p.e52839-e52839
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327156056
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Binding
Biology
Clustering
Dimerization
Dimers
Electrostatic properties
Experiments
G protein-coupled receptors
Gramicidin - analogs & derivatives
Gramicidin - chemistry
Gramicidin - metabolism
Interfaces
L-lysine
Ligands
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Lysine
Membrane lipids
Membrane proteins
Membranes
Peptides
Peptides - chemistry
Peptides - metabolism
Physics
Poly-L-lysine
Polylysine - chemistry
Polylysine - metabolism
Protein Binding
Proteins
Receptors
Recruitment
Signaling
Static Electricity
title Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatically%20induced%20recruitment%20of%20membrane%20peptides%20into%20clusters%20requires%20ligand%20binding%20at%20both%20interfaces&rft.jtitle=PloS%20one&rft.au=Antonenko,%20Yuri%20N&rft.date=2012-12-21&rft.volume=7&rft.issue=12&rft.spage=e52839&rft.epage=e52839&rft.pages=e52839-e52839&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0052839&rft_dat=%3Cgale_plos_%3EA477055745%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327156056&rft_id=info:pmid/23285199&rft_galeid=A477055745&rft_doaj_id=oai_doaj_org_article_0ade6c6b1c74483aa4254375a478d822&rfr_iscdi=true