Energy efficient neural stimulation: coupling circuit design and membrane biophysics

The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-12, Vol.7 (12), p.e51901-e51901
Hauptverfasser: Foutz, Thomas J, Ackermann, Jr, D Michael, Kilgore, Kevin L, McIntyre, Cameron C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e51901
container_issue 12
container_start_page e51901
container_title PloS one
container_volume 7
creator Foutz, Thomas J
Ackermann, Jr, D Michael
Kilgore, Kevin L
McIntyre, Cameron C
description The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.
doi_str_mv 10.1371/journal.pone.0051901
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327136591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083700</galeid><doaj_id>oai_doaj_org_article_939abb6e20b84d7b8ba720fd6f67b0a4</doaj_id><sourcerecordid>A477083700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-15e6dc181503e9ffe49fff02e1147e9b8443d2d5e22ace4e84c24b5123f164603</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLgujDjPnXpPVBWJZVBxYWdPU1pOlNJ0ObzCatON_ejNNdprIPUmhD8rvn9p6cLHuJ0RJTgT9s_Bic6pZb72CJUIErhB9lp7iiZMEJoo-P1ifZsxg3CaIl50-zE0KJILgsT7ObSweh3eVgjNUW3JA7GIPq8jjYfuzUYL37mGs_bjvr2lzboEc75A1E27pcuSbvoa-DcpDX1m_Xu2h1fJ49MaqL8GL6nmU_Pl_eXHxdXF1_WV2cXy00r8iwwAXwRuMSF4hCZQyw9DKIAMZMQFWXjNGGNAUQojQwKJkmrC4woQZzxhE9y14fdLedj3IyJEqcpsOUFxVOxOpANF5t5DbYXoWd9MrKvxs-tFKFweoOZEUrVdccCEqNG1GXtRIEmYYbLmqkWNL6NHUb6x4ancxKRs1E5yfOrmXrf0laECwYTQLvJoHgb0eIg-xt1NB1yT0_pv8mggokKCkT-uYf9OHpJqpVaQDrjE999V5UnjMhUJnk9i4tH6DS00BvdUqPsWl_VvB-VpCYAX4PrRpjlKvv3_6fvf45Z98esWtQ3bCOvhv3GYtzkB1AHXyMAcy9yRjJffjv3JD78Msp_Kns1fEF3RfdpZ3-AQwN_yM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327136591</pqid></control><display><type>article</type><title>Energy efficient neural stimulation: coupling circuit design and membrane biophysics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed (Medline)</source><source>PLoS_OA刊</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Foutz, Thomas J ; Ackermann, Jr, D Michael ; Kilgore, Kevin L ; McIntyre, Cameron C</creator><contributor>Foffani, Guglielmo</contributor><creatorcontrib>Foutz, Thomas J ; Ackermann, Jr, D Michael ; Kilgore, Kevin L ; McIntyre, Cameron C ; Foffani, Guglielmo</creatorcontrib><description>The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0051901</identifier><identifier>PMID: 23272188</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Axons - physiology ; Batteries ; Biology ; Biomedical engineering ; Biophysics ; Chronic pain ; Circuit design ; Circuits ; Computer simulation ; Electric potential ; Electric Stimulation ; Electrodes ; Energy conservation ; Energy consumption ; Energy efficiency ; Energy loss ; Energy management ; Energy use ; Engineering ; Experiments ; Health aspects ; Humans ; Medical devices ; Medical equipment ; Medicine ; Membrane Potentials ; Nerve Tissue - physiology ; Neuromodulation ; Pain ; Parkinson's disease ; Physics ; Power consumption ; Power efficiency ; Prostheses and implants ; Pulse generators ; Rats ; Sciatic Nerve - physiology ; Spinal cord ; Statistical analysis ; Stimulation ; Studies ; Transistors ; Voltage ; Waveforms</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e51901-e51901</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Foutz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Foutz et al 2012 Foutz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-15e6dc181503e9ffe49fff02e1147e9b8443d2d5e22ace4e84c24b5123f164603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23272188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Foffani, Guglielmo</contributor><creatorcontrib>Foutz, Thomas J</creatorcontrib><creatorcontrib>Ackermann, Jr, D Michael</creatorcontrib><creatorcontrib>Kilgore, Kevin L</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><title>Energy efficient neural stimulation: coupling circuit design and membrane biophysics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Batteries</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Biophysics</subject><subject>Chronic pain</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Electric potential</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy loss</subject><subject>Energy management</subject><subject>Energy use</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Medical devices</subject><subject>Medical equipment</subject><subject>Medicine</subject><subject>Membrane Potentials</subject><subject>Nerve Tissue - physiology</subject><subject>Neuromodulation</subject><subject>Pain</subject><subject>Parkinson's disease</subject><subject>Physics</subject><subject>Power consumption</subject><subject>Power efficiency</subject><subject>Prostheses and implants</subject><subject>Pulse generators</subject><subject>Rats</subject><subject>Sciatic Nerve - physiology</subject><subject>Spinal cord</subject><subject>Statistical analysis</subject><subject>Stimulation</subject><subject>Studies</subject><subject>Transistors</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLgujDjPnXpPVBWJZVBxYWdPU1pOlNJ0ObzCatON_ejNNdprIPUmhD8rvn9p6cLHuJ0RJTgT9s_Bic6pZb72CJUIErhB9lp7iiZMEJoo-P1ifZsxg3CaIl50-zE0KJILgsT7ObSweh3eVgjNUW3JA7GIPq8jjYfuzUYL37mGs_bjvr2lzboEc75A1E27pcuSbvoa-DcpDX1m_Xu2h1fJ49MaqL8GL6nmU_Pl_eXHxdXF1_WV2cXy00r8iwwAXwRuMSF4hCZQyw9DKIAMZMQFWXjNGGNAUQojQwKJkmrC4woQZzxhE9y14fdLedj3IyJEqcpsOUFxVOxOpANF5t5DbYXoWd9MrKvxs-tFKFweoOZEUrVdccCEqNG1GXtRIEmYYbLmqkWNL6NHUb6x4ancxKRs1E5yfOrmXrf0laECwYTQLvJoHgb0eIg-xt1NB1yT0_pv8mggokKCkT-uYf9OHpJqpVaQDrjE999V5UnjMhUJnk9i4tH6DS00BvdUqPsWl_VvB-VpCYAX4PrRpjlKvv3_6fvf45Z98esWtQ3bCOvhv3GYtzkB1AHXyMAcy9yRjJffjv3JD78Msp_Kns1fEF3RfdpZ3-AQwN_yM</recordid><startdate>20121213</startdate><enddate>20121213</enddate><creator>Foutz, Thomas J</creator><creator>Ackermann, Jr, D Michael</creator><creator>Kilgore, Kevin L</creator><creator>McIntyre, Cameron C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121213</creationdate><title>Energy efficient neural stimulation: coupling circuit design and membrane biophysics</title><author>Foutz, Thomas J ; Ackermann, Jr, D Michael ; Kilgore, Kevin L ; McIntyre, Cameron C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-15e6dc181503e9ffe49fff02e1147e9b8443d2d5e22ace4e84c24b5123f164603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Batteries</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Biophysics</topic><topic>Chronic pain</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Electric potential</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy loss</topic><topic>Energy management</topic><topic>Energy use</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Medical devices</topic><topic>Medical equipment</topic><topic>Medicine</topic><topic>Membrane Potentials</topic><topic>Nerve Tissue - physiology</topic><topic>Neuromodulation</topic><topic>Pain</topic><topic>Parkinson's disease</topic><topic>Physics</topic><topic>Power consumption</topic><topic>Power efficiency</topic><topic>Prostheses and implants</topic><topic>Pulse generators</topic><topic>Rats</topic><topic>Sciatic Nerve - physiology</topic><topic>Spinal cord</topic><topic>Statistical analysis</topic><topic>Stimulation</topic><topic>Studies</topic><topic>Transistors</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foutz, Thomas J</creatorcontrib><creatorcontrib>Ackermann, Jr, D Michael</creatorcontrib><creatorcontrib>Kilgore, Kevin L</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foutz, Thomas J</au><au>Ackermann, Jr, D Michael</au><au>Kilgore, Kevin L</au><au>McIntyre, Cameron C</au><au>Foffani, Guglielmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy efficient neural stimulation: coupling circuit design and membrane biophysics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-13</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e51901</spage><epage>e51901</epage><pages>e51901-e51901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23272188</pmid><doi>10.1371/journal.pone.0051901</doi><tpages>e51901</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-12, Vol.7 (12), p.e51901-e51901
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327136591
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed (Medline); PLoS_OA刊; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animals
Axons - physiology
Batteries
Biology
Biomedical engineering
Biophysics
Chronic pain
Circuit design
Circuits
Computer simulation
Electric potential
Electric Stimulation
Electrodes
Energy conservation
Energy consumption
Energy efficiency
Energy loss
Energy management
Energy use
Engineering
Experiments
Health aspects
Humans
Medical devices
Medical equipment
Medicine
Membrane Potentials
Nerve Tissue - physiology
Neuromodulation
Pain
Parkinson's disease
Physics
Power consumption
Power efficiency
Prostheses and implants
Pulse generators
Rats
Sciatic Nerve - physiology
Spinal cord
Statistical analysis
Stimulation
Studies
Transistors
Voltage
Waveforms
title Energy efficient neural stimulation: coupling circuit design and membrane biophysics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T14%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20efficient%20neural%20stimulation:%20coupling%20circuit%20design%20and%20membrane%20biophysics&rft.jtitle=PloS%20one&rft.au=Foutz,%20Thomas%20J&rft.date=2012-12-13&rft.volume=7&rft.issue=12&rft.spage=e51901&rft.epage=e51901&rft.pages=e51901-e51901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0051901&rft_dat=%3Cgale_plos_%3EA477083700%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327136591&rft_id=info:pmid/23272188&rft_galeid=A477083700&rft_doaj_id=oai_doaj_org_article_939abb6e20b84d7b8ba720fd6f67b0a4&rfr_iscdi=true