Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA)
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-12, Vol.7 (12), p.e51093-e51093 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e51093 |
---|---|
container_issue | 12 |
container_start_page | e51093 |
container_title | PloS one |
container_volume | 7 |
creator | Gotoh, Mari Sano-Maeda, Katsura Murofushi, Hiromu Murakami-Murofushi, Kimiko |
description | Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2). |
doi_str_mv | 10.1371/journal.pone.0051093 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327136289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083754</galeid><doaj_id>oai_doaj_org_article_00bc8407c1d045f88c9bd1fbae97241a</doaj_id><sourcerecordid>A477083754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-a2524c514dc65c4e374182567aac05bb4b83b02c82304466067f24d77c4512b53</originalsourceid><addsrcrecordid>eNqNk0tr3DAQx01padK036C0hkJJDrvV07IvhSX0sRCa0NdVyGN5rcVruZJcst--ctcJ65JD0UEa6Tf_GY00SfISoyWmAr_b2sF1ql32ttNLhDhGBX2UnOKCkkVGEH18tD5Jnnm_jRDNs-xpckIo4ZiR_DTZ3jgbNARju9TWaacHZ8tW-WB3Kv0yWmSVgm5bn9bO7tJm39tboxamqwbQVap62wfrjU_LfQp7aA2kfWN936hgqmgoMFV6Djeri-fJk1q1Xr-Y5rPkx8cP3y8_L66uP60vV1cLEDwPC0U4YRDTqyDjwDQVDOeEZ0IpQLwsWZnTEhHICUWMZRnKRE1YJQQwjknJ6Vny-qDbt9bLqUxeYkoEphnJi0isD0Rl1Vb2zuyU20urjPy7Yd1GKhcMtFoiVELOkABcIcbrPIeirHBdKl0IwrCKWu-naEO50xXoLjjVzkTnJ51p5Mb-lpQTjLCIAueTgLO_Bu2D3Bk_Vlx12g4xbyIoxaIosoi--Qd9-HYTtVHxAqarbYwLo6hcMSFQTgVnkVo-QMVR6Z2B-KdqE_dnDhczh8gEfRs2avBerr99_X_2-uecfXvENlq1ofG2HcYv6ecgO4DgrPdO1_dFxkiOLXFXDTm2hJxaIrq9On6ge6e7HqB_AJRbBVY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327136289</pqid></control><display><type>article</type><title>Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gotoh, Mari ; Sano-Maeda, Katsura ; Murofushi, Hiromu ; Murakami-Murofushi, Kimiko</creator><contributor>Linden, Rafael</contributor><creatorcontrib>Gotoh, Mari ; Sano-Maeda, Katsura ; Murofushi, Hiromu ; Murakami-Murofushi, Kimiko ; Linden, Rafael</creatorcontrib><description>Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0051093</identifier><identifier>PMID: 23251428</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accountants ; Acids ; Analysis ; Animals ; Apoptosis ; Apoptosis - drug effects ; BAX protein ; Bcl-2 protein ; Biology ; Blotting, Western ; Cell death ; Cell Hypoxia ; Cell Line, Tumor ; Cobalt ; Cobalt - pharmacology ; Cobalt chloride ; Cobalt compounds ; Deoxyribonucleic acid ; DNA ; Flow Cytometry ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - metabolism ; Glycerol ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - metabolism ; Humans ; Hypoxia ; Intermediate filament proteins ; Ischemia ; Kinases ; Mice ; Molecular modelling ; Mortality ; Neuroblastoma ; Neuronal-glial interactions ; Neuroprotection ; Phosphates ; Phosphatidic acid ; Phosphatidic Acids - chemistry ; Phosphatidylserine ; Phospholipids ; Proteins ; Reactive Oxygen Species - metabolism ; Receptors ; siRNA ; Studies</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e51093-e51093</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Gotoh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Gotoh et al 2012 Gotoh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-a2524c514dc65c4e374182567aac05bb4b83b02c82304466067f24d77c4512b53</citedby><cites>FETCH-LOGICAL-c758t-a2524c514dc65c4e374182567aac05bb4b83b02c82304466067f24d77c4512b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521017/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521017/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23251428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Linden, Rafael</contributor><creatorcontrib>Gotoh, Mari</creatorcontrib><creatorcontrib>Sano-Maeda, Katsura</creatorcontrib><creatorcontrib>Murofushi, Hiromu</creatorcontrib><creatorcontrib>Murakami-Murofushi, Kimiko</creatorcontrib><title>Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).</description><subject>Accountants</subject><subject>Acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>BAX protein</subject><subject>Bcl-2 protein</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Cell death</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>Cobalt</subject><subject>Cobalt - pharmacology</subject><subject>Cobalt chloride</subject><subject>Cobalt compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Flow Cytometry</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Glycerol</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Intermediate filament proteins</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Mortality</subject><subject>Neuroblastoma</subject><subject>Neuronal-glial interactions</subject><subject>Neuroprotection</subject><subject>Phosphates</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - chemistry</subject><subject>Phosphatidylserine</subject><subject>Phospholipids</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors</subject><subject>siRNA</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQx01padK036C0hkJJDrvV07IvhSX0sRCa0NdVyGN5rcVruZJcst--ctcJ65JD0UEa6Tf_GY00SfISoyWmAr_b2sF1ql32ttNLhDhGBX2UnOKCkkVGEH18tD5Jnnm_jRDNs-xpckIo4ZiR_DTZ3jgbNARju9TWaacHZ8tW-WB3Kv0yWmSVgm5bn9bO7tJm39tboxamqwbQVap62wfrjU_LfQp7aA2kfWN936hgqmgoMFV6Djeri-fJk1q1Xr-Y5rPkx8cP3y8_L66uP60vV1cLEDwPC0U4YRDTqyDjwDQVDOeEZ0IpQLwsWZnTEhHICUWMZRnKRE1YJQQwjknJ6Vny-qDbt9bLqUxeYkoEphnJi0isD0Rl1Vb2zuyU20urjPy7Yd1GKhcMtFoiVELOkABcIcbrPIeirHBdKl0IwrCKWu-naEO50xXoLjjVzkTnJ51p5Mb-lpQTjLCIAueTgLO_Bu2D3Bk_Vlx12g4xbyIoxaIosoi--Qd9-HYTtVHxAqarbYwLo6hcMSFQTgVnkVo-QMVR6Z2B-KdqE_dnDhczh8gEfRs2avBerr99_X_2-uecfXvENlq1ofG2HcYv6ecgO4DgrPdO1_dFxkiOLXFXDTm2hJxaIrq9On6ge6e7HqB_AJRbBVY</recordid><startdate>20121212</startdate><enddate>20121212</enddate><creator>Gotoh, Mari</creator><creator>Sano-Maeda, Katsura</creator><creator>Murofushi, Hiromu</creator><creator>Murakami-Murofushi, Kimiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121212</creationdate><title>Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA)</title><author>Gotoh, Mari ; Sano-Maeda, Katsura ; Murofushi, Hiromu ; Murakami-Murofushi, Kimiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-a2524c514dc65c4e374182567aac05bb4b83b02c82304466067f24d77c4512b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accountants</topic><topic>Acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>BAX protein</topic><topic>Bcl-2 protein</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Cell death</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>Cobalt</topic><topic>Cobalt - pharmacology</topic><topic>Cobalt chloride</topic><topic>Cobalt compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Flow Cytometry</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Glycerol</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Intermediate filament proteins</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Mortality</topic><topic>Neuroblastoma</topic><topic>Neuronal-glial interactions</topic><topic>Neuroprotection</topic><topic>Phosphates</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - chemistry</topic><topic>Phosphatidylserine</topic><topic>Phospholipids</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors</topic><topic>siRNA</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotoh, Mari</creatorcontrib><creatorcontrib>Sano-Maeda, Katsura</creatorcontrib><creatorcontrib>Murofushi, Hiromu</creatorcontrib><creatorcontrib>Murakami-Murofushi, Kimiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotoh, Mari</au><au>Sano-Maeda, Katsura</au><au>Murofushi, Hiromu</au><au>Murakami-Murofushi, Kimiko</au><au>Linden, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-12</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e51093</spage><epage>e51093</epage><pages>e51093-e51093</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23251428</pmid><doi>10.1371/journal.pone.0051093</doi><tpages>e51093</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e51093-e51093 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327136289 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accountants Acids Analysis Animals Apoptosis Apoptosis - drug effects BAX protein Bcl-2 protein Biology Blotting, Western Cell death Cell Hypoxia Cell Line, Tumor Cobalt Cobalt - pharmacology Cobalt chloride Cobalt compounds Deoxyribonucleic acid DNA Flow Cytometry Glial fibrillary acidic protein Glial Fibrillary Acidic Protein - metabolism Glycerol Hippocampus Hippocampus - drug effects Hippocampus - metabolism Humans Hypoxia Intermediate filament proteins Ischemia Kinases Mice Molecular modelling Mortality Neuroblastoma Neuronal-glial interactions Neuroprotection Phosphates Phosphatidic acid Phosphatidic Acids - chemistry Phosphatidylserine Phospholipids Proteins Reactive Oxygen Species - metabolism Receptors siRNA Studies |
title | Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protection%20of%20neuroblastoma%20Neuro2A%20cells%20from%20hypoxia-induced%20apoptosis%20by%20cyclic%20phosphatidic%20acid%20(cPA)&rft.jtitle=PloS%20one&rft.au=Gotoh,%20Mari&rft.date=2012-12-12&rft.volume=7&rft.issue=12&rft.spage=e51093&rft.epage=e51093&rft.pages=e51093-e51093&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0051093&rft_dat=%3Cgale_plos_%3EA477083754%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327136289&rft_id=info:pmid/23251428&rft_galeid=A477083754&rft_doaj_id=oai_doaj_org_article_00bc8407c1d045f88c9bd1fbae97241a&rfr_iscdi=true |