Correlation between in vivo biofilm formation and virulence gene expression in Escherichia coli O104:H4
The emergence of novel pathogens poses a major public health threat causing widespread epidemics in susceptible populations. The Escherichia coli O104:H4 strain implicated in a 2011 outbreak in northern Germany caused the highest frequency of hemolytic uremic syndrome (HUS) and death ever recorded i...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-07, Vol.7 (7), p.e41628-e41628 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence of novel pathogens poses a major public health threat causing widespread epidemics in susceptible populations. The Escherichia coli O104:H4 strain implicated in a 2011 outbreak in northern Germany caused the highest frequency of hemolytic uremic syndrome (HUS) and death ever recorded in a single E. coli outbreak. Therefore, it has been suggested that this strain is more virulent than other pathogenic E. coli (e.g., E. coli O157:H7). The E. coli O104:H4 outbreak strain possesses multiple virulence factors from both Shiga toxin (Stx)-producing E. coli (STEC) and enteroaggregative E. coli (EAEC), though the mechanism of pathogenesis is not known. Here, we demonstrate that E. coli O104:H4 produces a stable biofilm in vitro and that in vivo virulence gene expression is highest when E. coli O104:H4 overexpresses genes required for aggregation and exopolysaccharide production, a characteristic of bacterial cells residing within an established biofilm. Interrupting exopolysaccharide production and biofilm formation may therefore represent effective strategies for combating future E. coli O104:H4 infections. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0041628 |