Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ

Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e50066
Hauptverfasser: Cherukuri, Pratima, DeCastro, Andrew J, Balboni, Amanda L, Downey, Sondra L, Liu, Jennifer Y, Hutchinson, Justine A, DiRenzo, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e50066
container_title PloS one
container_volume 7
creator Cherukuri, Pratima
DeCastro, Andrew J
Balboni, Amanda L
Downey, Sondra L
Liu, Jennifer Y
Hutchinson, Justine A
DiRenzo, James
description Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5(IKD)). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5(IKD) mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.
doi_str_mv 10.1371/journal.pone.0050066
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1326746538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ee5fcfb2f4f4a96b689e85ae204992a</doaj_id><sourcerecordid>2944507531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a47b9fae22c686f3afdf0ccb2a6fb74b0bb7bb703453ca3e1331a688d8a798a73</originalsourceid><addsrcrecordid>eNp1kttq3DAQhk1paA7NG5RW0GtvdLBl-6YQQpKGLmkvkmsx1kq2Fq_kStqFvEdfpH2QfaZos05ILgoSGqR_vhlGf5Z9InhGWEXOlm7tLQyz0Vk1w7jEmPN32RFpGM05xez9q_gwOw5hmUSs5vxDdkgZ4bym5CiLv3oXxt75hwGicRY5jbZ_bkfOtn_RxgACZN1GDeju-mr77-x8_qNEwXSpsLEdWinZgzVhlaKFgagCir1CYKPJ5eCs65Q1EimtlYxhx37CfMwONAxBnU7nSXZ_dXl38T2f_7y-uTif57KkPOZQVG2jQVEqec01A73QWMqWAtdtVbS4bau0MCtKJoEpwhgBXteLGqombXaSfdlzx8EFMQ0sCMIorwqehpEUN3vFwsFSjN6swD8IB0Y8XTjfCfDRyEGJUqlSS91SXegCGt7yulF1mdrDRdNQSKxvU7V1m8YhlY0ehjfQty_W9KJzG8HS37GCJcDXCeDd77UK8T8tF3uV9C4Er_RLBYLFzhnPWWLnDDE5I6V9ft3dS9KzFdgjvNW7cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326746538</pqid></control><display><type>article</type><title>Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Cherukuri, Pratima ; DeCastro, Andrew J ; Balboni, Amanda L ; Downey, Sondra L ; Liu, Jennifer Y ; Hutchinson, Justine A ; DiRenzo, James</creator><creatorcontrib>Cherukuri, Pratima ; DeCastro, Andrew J ; Balboni, Amanda L ; Downey, Sondra L ; Liu, Jennifer Y ; Hutchinson, Justine A ; DiRenzo, James</creatorcontrib><description>Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5(IKD)). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5(IKD) mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050066</identifier><identifier>PMID: 23166821</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cancer ; Carcinoma ; Cell cycle ; Cell fate ; Cell survival ; Cells, Cultured ; Cellular stress response ; Colony-Forming Units Assay ; DNA Primers - genetics ; Ectopic expression ; Enzyme inhibitors ; Gene expression ; Genetic analysis ; Humans ; Irradiation ; Isoforms ; Kinases ; Life span ; Localization ; Medicine ; Models, Biological ; Pharmacology ; Phosphorylation ; Polarity ; Preservation ; Protein-Serine-Threonine Kinases - metabolism ; Receptors, Transforming Growth Factor beta - metabolism ; Resistance factors ; RNA, Small Interfering - genetics ; Rodents ; Senescence ; Serine ; Signal transduction ; Signal Transduction - genetics ; Signaling ; siRNA ; Stem cells ; Studies ; Survival factor ; Toxicology ; Transcription Factors - metabolism ; Transfection ; Transforming Growth Factor beta - metabolism ; Translocation ; Tumor Suppressor Proteins - metabolism ; Ultraviolet radiation</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e50066</ispartof><rights>2012 Cherukuri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Cherukuri et al 2012 Cherukuri et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a47b9fae22c686f3afdf0ccb2a6fb74b0bb7bb703453ca3e1331a688d8a798a73</citedby><cites>FETCH-LOGICAL-c526t-a47b9fae22c686f3afdf0ccb2a6fb74b0bb7bb703453ca3e1331a688d8a798a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500343/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500343/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23166821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherukuri, Pratima</creatorcontrib><creatorcontrib>DeCastro, Andrew J</creatorcontrib><creatorcontrib>Balboni, Amanda L</creatorcontrib><creatorcontrib>Downey, Sondra L</creatorcontrib><creatorcontrib>Liu, Jennifer Y</creatorcontrib><creatorcontrib>Hutchinson, Justine A</creatorcontrib><creatorcontrib>DiRenzo, James</creatorcontrib><title>Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5(IKD)). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5(IKD) mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.</description><subject>Biology</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Cell cycle</subject><subject>Cell fate</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Cellular stress response</subject><subject>Colony-Forming Units Assay</subject><subject>DNA Primers - genetics</subject><subject>Ectopic expression</subject><subject>Enzyme inhibitors</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Humans</subject><subject>Irradiation</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Life span</subject><subject>Localization</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Polarity</subject><subject>Preservation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>Resistance factors</subject><subject>RNA, Small Interfering - genetics</subject><subject>Rodents</subject><subject>Senescence</subject><subject>Serine</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Survival factor</subject><subject>Toxicology</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Translocation</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ultraviolet radiation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kttq3DAQhk1paA7NG5RW0GtvdLBl-6YQQpKGLmkvkmsx1kq2Fq_kStqFvEdfpH2QfaZos05ILgoSGqR_vhlGf5Z9InhGWEXOlm7tLQyz0Vk1w7jEmPN32RFpGM05xez9q_gwOw5hmUSs5vxDdkgZ4bym5CiLv3oXxt75hwGicRY5jbZ_bkfOtn_RxgACZN1GDeju-mr77-x8_qNEwXSpsLEdWinZgzVhlaKFgagCir1CYKPJ5eCs65Q1EimtlYxhx37CfMwONAxBnU7nSXZ_dXl38T2f_7y-uTif57KkPOZQVG2jQVEqec01A73QWMqWAtdtVbS4bau0MCtKJoEpwhgBXteLGqombXaSfdlzx8EFMQ0sCMIorwqehpEUN3vFwsFSjN6swD8IB0Y8XTjfCfDRyEGJUqlSS91SXegCGt7yulF1mdrDRdNQSKxvU7V1m8YhlY0ehjfQty_W9KJzG8HS37GCJcDXCeDd77UK8T8tF3uV9C4Er_RLBYLFzhnPWWLnDDE5I6V9ft3dS9KzFdgjvNW7cw</recordid><startdate>20121116</startdate><enddate>20121116</enddate><creator>Cherukuri, Pratima</creator><creator>DeCastro, Andrew J</creator><creator>Balboni, Amanda L</creator><creator>Downey, Sondra L</creator><creator>Liu, Jennifer Y</creator><creator>Hutchinson, Justine A</creator><creator>DiRenzo, James</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121116</creationdate><title>Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ</title><author>Cherukuri, Pratima ; DeCastro, Andrew J ; Balboni, Amanda L ; Downey, Sondra L ; Liu, Jennifer Y ; Hutchinson, Justine A ; DiRenzo, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a47b9fae22c686f3afdf0ccb2a6fb74b0bb7bb703453ca3e1331a688d8a798a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Cell cycle</topic><topic>Cell fate</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Cellular stress response</topic><topic>Colony-Forming Units Assay</topic><topic>DNA Primers - genetics</topic><topic>Ectopic expression</topic><topic>Enzyme inhibitors</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Humans</topic><topic>Irradiation</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Life span</topic><topic>Localization</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Polarity</topic><topic>Preservation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>Resistance factors</topic><topic>RNA, Small Interfering - genetics</topic><topic>Rodents</topic><topic>Senescence</topic><topic>Serine</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Survival factor</topic><topic>Toxicology</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Translocation</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherukuri, Pratima</creatorcontrib><creatorcontrib>DeCastro, Andrew J</creatorcontrib><creatorcontrib>Balboni, Amanda L</creatorcontrib><creatorcontrib>Downey, Sondra L</creatorcontrib><creatorcontrib>Liu, Jennifer Y</creatorcontrib><creatorcontrib>Hutchinson, Justine A</creatorcontrib><creatorcontrib>DiRenzo, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherukuri, Pratima</au><au>DeCastro, Andrew J</au><au>Balboni, Amanda L</au><au>Downey, Sondra L</au><au>Liu, Jennifer Y</au><au>Hutchinson, Justine A</au><au>DiRenzo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-16</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e50066</spage><pages>e50066-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5(IKD)). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5(IKD) mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23166821</pmid><doi>10.1371/journal.pone.0050066</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e50066
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326746538
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Biology
Cancer
Carcinoma
Cell cycle
Cell fate
Cell survival
Cells, Cultured
Cellular stress response
Colony-Forming Units Assay
DNA Primers - genetics
Ectopic expression
Enzyme inhibitors
Gene expression
Genetic analysis
Humans
Irradiation
Isoforms
Kinases
Life span
Localization
Medicine
Models, Biological
Pharmacology
Phosphorylation
Polarity
Preservation
Protein-Serine-Threonine Kinases - metabolism
Receptors, Transforming Growth Factor beta - metabolism
Resistance factors
RNA, Small Interfering - genetics
Rodents
Senescence
Serine
Signal transduction
Signal Transduction - genetics
Signaling
siRNA
Stem cells
Studies
Survival factor
Toxicology
Transcription Factors - metabolism
Transfection
Transforming Growth Factor beta - metabolism
Translocation
Tumor Suppressor Proteins - metabolism
Ultraviolet radiation
title Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20%CE%94Np63%CE%B1%20via%20a%20novel%20TGF%CE%B2/ALK5%20signaling%20mechanism%20mediates%20the%20anti-clonogenic%20effects%20of%20TGF%CE%B2&rft.jtitle=PloS%20one&rft.au=Cherukuri,%20Pratima&rft.date=2012-11-16&rft.volume=7&rft.issue=11&rft.spage=e50066&rft.pages=e50066-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050066&rft_dat=%3Cproquest_plos_%3E2944507531%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326746538&rft_id=info:pmid/23166821&rft_doaj_id=oai_doaj_org_article_5ee5fcfb2f4f4a96b689e85ae204992a&rfr_iscdi=true