Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and t...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-11, Vol.7 (11), p.e49456-e49456 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e49456 |
---|---|
container_issue | 11 |
container_start_page | e49456 |
container_title | PloS one |
container_volume | 7 |
creator | Saito, Keita Matsumoto, Shingo Yasui, Hironobu Devasahayam, Nallathamby Subramanian, Sankaran Munasinghe, Jeeva P Patel, Vyomesh Gutkind, J Silvio Mitchell, James B Krishna, Murali C |
description | Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3)) and measurements of tumor pO(2) and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2) levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2) |
doi_str_mv | 10.1371/journal.pone.0049456 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326742604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477056596</galeid><doaj_id>oai_doaj_org_article_4ea830aae35c4085b5ff0c8ccba88170</doaj_id><sourcerecordid>A477056596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3f69090c24b3ac2b8ffc0b440e419383eb927badf326191e84fa019625b3e1593</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13zOx41Qih8LCwu1ehsy2ZOZlJlkTTLV_nuz7rTsSC8kFwknz_sm5yQny15itMS0xB-u3eit7Jc7Z2GJEKsZLx5lp7imZFEQRB8frU-yZyFcI8RpVRRPsxNCccUp5adZt3a2NXHcmuSVm0G2xrZ52Acg5E7ncRyczwejvAN7Y7yzA9iYG7uPQR49yAjb_JeJXR47yIerzWXa7UxjYhJ6uZPDrTL2efZEyz7Ai2k-y75__nR18XWx3nxZXZyvF6qoSVxQXdSoRoqwhkpFmkprhRrGELCUTUWhqUnZyK2mpMA1hoppiXBdEN5QwLymZ9nrg--ud0FMRQoCJ75kpEAsEasDsXXyWux8StrfCieN-BtwvhXSR6N6EAxkRZGUQLliqOIN1xqpSqlGVhUuUfL6OJ02NgNsVSqNl_3MdL5jTSdadyMoR4STKhm8mwy8-zlCiGIwQUHfSwtuTPcmBPESI4QT-uYf9OHsJqqVKQFjtUvnqr2pOGdliXjB6yJRyweoNLaQnjX9KG1SfCZ4PxMkJsLv2MoxBLH6dvn_7ObHnH17xHYg-9gF14_ROBvmIDuA6SOG4EHfFxkjsW-Iu2qIfUOIqSGS7NXxA92L7jqA_gEIIQaV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326742604</pqid></control><display><type>article</type><title>Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Saito, Keita ; Matsumoto, Shingo ; Yasui, Hironobu ; Devasahayam, Nallathamby ; Subramanian, Sankaran ; Munasinghe, Jeeva P ; Patel, Vyomesh ; Gutkind, J Silvio ; Mitchell, James B ; Krishna, Murali C</creator><contributor>Man, Kwan</contributor><creatorcontrib>Saito, Keita ; Matsumoto, Shingo ; Yasui, Hironobu ; Devasahayam, Nallathamby ; Subramanian, Sankaran ; Munasinghe, Jeeva P ; Patel, Vyomesh ; Gutkind, J Silvio ; Mitchell, James B ; Krishna, Murali C ; Man, Kwan</creatorcontrib><description>Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3)) and measurements of tumor pO(2) and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2) levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2)<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049456</identifier><identifier>PMID: 23185335</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Allosteric properties ; Angiogenesis ; Angiogenesis Inhibitors - therapeutic use ; Animals ; Biology ; Biomarkers - metabolism ; Blood ; Blood volume ; Cancer therapies ; Carcinoma, Squamous Cell - metabolism ; Density ; Diagnostic imaging ; Diagnostic Imaging - methods ; Electron paramagnetic resonance ; Electron Spin Resonance Spectroscopy - methods ; Fourier transforms ; Hypoxia ; Immunohistochemistry - methods ; Implantation ; Inhibitors ; Kinases ; Laboratory animals ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical research ; Medicine ; Mercury ; Metabolism ; Mice ; Mice, Inbred C3H ; Microcirculation ; Neovascularization, Pathologic - drug therapy ; NMR ; Nuclear magnetic resonance ; Oxygen - chemistry ; Oxygen - metabolism ; Oxygenation ; Radiation therapy ; Radiotherapy ; Rapamycin ; Resonance ; Sirolimus - pharmacology ; Solid tumors ; Squamous cell carcinoma ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Tumor Microenvironment ; Tumors ; Vascular endothelial growth factor ; Veterinary medicine</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49456-e49456</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3f69090c24b3ac2b8ffc0b440e419383eb927badf326191e84fa019625b3e1593</citedby><cites>FETCH-LOGICAL-c692t-3f69090c24b3ac2b8ffc0b440e419383eb927badf326191e84fa019625b3e1593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502528/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502528/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23185335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Man, Kwan</contributor><creatorcontrib>Saito, Keita</creatorcontrib><creatorcontrib>Matsumoto, Shingo</creatorcontrib><creatorcontrib>Yasui, Hironobu</creatorcontrib><creatorcontrib>Devasahayam, Nallathamby</creatorcontrib><creatorcontrib>Subramanian, Sankaran</creatorcontrib><creatorcontrib>Munasinghe, Jeeva P</creatorcontrib><creatorcontrib>Patel, Vyomesh</creatorcontrib><creatorcontrib>Gutkind, J Silvio</creatorcontrib><creatorcontrib>Mitchell, James B</creatorcontrib><creatorcontrib>Krishna, Murali C</creatorcontrib><title>Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3)) and measurements of tumor pO(2) and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2) levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2)<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.</description><subject>Aberration</subject><subject>Allosteric properties</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Animals</subject><subject>Biology</subject><subject>Biomarkers - metabolism</subject><subject>Blood</subject><subject>Blood volume</subject><subject>Cancer therapies</subject><subject>Carcinoma, Squamous Cell - metabolism</subject><subject>Density</subject><subject>Diagnostic imaging</subject><subject>Diagnostic Imaging - methods</subject><subject>Electron paramagnetic resonance</subject><subject>Electron Spin Resonance Spectroscopy - methods</subject><subject>Fourier transforms</subject><subject>Hypoxia</subject><subject>Immunohistochemistry - methods</subject><subject>Implantation</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mercury</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Microcirculation</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Oxygenation</subject><subject>Radiation therapy</subject><subject>Radiotherapy</subject><subject>Rapamycin</subject><subject>Resonance</subject><subject>Sirolimus - pharmacology</subject><subject>Solid tumors</subject><subject>Squamous cell carcinoma</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi13zOx41Qih8LCwu1ehsy2ZOZlJlkTTLV_nuz7rTsSC8kFwknz_sm5yQny15itMS0xB-u3eit7Jc7Z2GJEKsZLx5lp7imZFEQRB8frU-yZyFcI8RpVRRPsxNCccUp5adZt3a2NXHcmuSVm0G2xrZ52Acg5E7ncRyczwejvAN7Y7yzA9iYG7uPQR49yAjb_JeJXR47yIerzWXa7UxjYhJ6uZPDrTL2efZEyz7Ai2k-y75__nR18XWx3nxZXZyvF6qoSVxQXdSoRoqwhkpFmkprhRrGELCUTUWhqUnZyK2mpMA1hoppiXBdEN5QwLymZ9nrg--ud0FMRQoCJ75kpEAsEasDsXXyWux8StrfCieN-BtwvhXSR6N6EAxkRZGUQLliqOIN1xqpSqlGVhUuUfL6OJ02NgNsVSqNl_3MdL5jTSdadyMoR4STKhm8mwy8-zlCiGIwQUHfSwtuTPcmBPESI4QT-uYf9OHsJqqVKQFjtUvnqr2pOGdliXjB6yJRyweoNLaQnjX9KG1SfCZ4PxMkJsLv2MoxBLH6dvn_7ObHnH17xHYg-9gF14_ROBvmIDuA6SOG4EHfFxkjsW-Iu2qIfUOIqSGS7NXxA92L7jqA_gEIIQaV</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>Saito, Keita</creator><creator>Matsumoto, Shingo</creator><creator>Yasui, Hironobu</creator><creator>Devasahayam, Nallathamby</creator><creator>Subramanian, Sankaran</creator><creator>Munasinghe, Jeeva P</creator><creator>Patel, Vyomesh</creator><creator>Gutkind, J Silvio</creator><creator>Mitchell, James B</creator><creator>Krishna, Murali C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121120</creationdate><title>Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin</title><author>Saito, Keita ; Matsumoto, Shingo ; Yasui, Hironobu ; Devasahayam, Nallathamby ; Subramanian, Sankaran ; Munasinghe, Jeeva P ; Patel, Vyomesh ; Gutkind, J Silvio ; Mitchell, James B ; Krishna, Murali C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3f69090c24b3ac2b8ffc0b440e419383eb927badf326191e84fa019625b3e1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aberration</topic><topic>Allosteric properties</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Animals</topic><topic>Biology</topic><topic>Biomarkers - metabolism</topic><topic>Blood</topic><topic>Blood volume</topic><topic>Cancer therapies</topic><topic>Carcinoma, Squamous Cell - metabolism</topic><topic>Density</topic><topic>Diagnostic imaging</topic><topic>Diagnostic Imaging - methods</topic><topic>Electron paramagnetic resonance</topic><topic>Electron Spin Resonance Spectroscopy - methods</topic><topic>Fourier transforms</topic><topic>Hypoxia</topic><topic>Immunohistochemistry - methods</topic><topic>Implantation</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mercury</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Microcirculation</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Oxygenation</topic><topic>Radiation therapy</topic><topic>Radiotherapy</topic><topic>Rapamycin</topic><topic>Resonance</topic><topic>Sirolimus - pharmacology</topic><topic>Solid tumors</topic><topic>Squamous cell carcinoma</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Keita</creatorcontrib><creatorcontrib>Matsumoto, Shingo</creatorcontrib><creatorcontrib>Yasui, Hironobu</creatorcontrib><creatorcontrib>Devasahayam, Nallathamby</creatorcontrib><creatorcontrib>Subramanian, Sankaran</creatorcontrib><creatorcontrib>Munasinghe, Jeeva P</creatorcontrib><creatorcontrib>Patel, Vyomesh</creatorcontrib><creatorcontrib>Gutkind, J Silvio</creatorcontrib><creatorcontrib>Mitchell, James B</creatorcontrib><creatorcontrib>Krishna, Murali C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Keita</au><au>Matsumoto, Shingo</au><au>Yasui, Hironobu</au><au>Devasahayam, Nallathamby</au><au>Subramanian, Sankaran</au><au>Munasinghe, Jeeva P</au><au>Patel, Vyomesh</au><au>Gutkind, J Silvio</au><au>Mitchell, James B</au><au>Krishna, Murali C</au><au>Man, Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-20</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49456</spage><epage>e49456</epage><pages>e49456-e49456</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3)) and measurements of tumor pO(2) and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2) levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2)<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23185335</pmid><doi>10.1371/journal.pone.0049456</doi><tpages>e49456</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-11, Vol.7 (11), p.e49456-e49456 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326742604 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aberration Allosteric properties Angiogenesis Angiogenesis Inhibitors - therapeutic use Animals Biology Biomarkers - metabolism Blood Blood volume Cancer therapies Carcinoma, Squamous Cell - metabolism Density Diagnostic imaging Diagnostic Imaging - methods Electron paramagnetic resonance Electron Spin Resonance Spectroscopy - methods Fourier transforms Hypoxia Immunohistochemistry - methods Implantation Inhibitors Kinases Laboratory animals Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical research Medicine Mercury Metabolism Mice Mice, Inbred C3H Microcirculation Neovascularization, Pathologic - drug therapy NMR Nuclear magnetic resonance Oxygen - chemistry Oxygen - metabolism Oxygenation Radiation therapy Radiotherapy Rapamycin Resonance Sirolimus - pharmacology Solid tumors Squamous cell carcinoma TOR protein TOR Serine-Threonine Kinases - metabolism Tumor Microenvironment Tumors Vascular endothelial growth factor Veterinary medicine |
title | Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20imaging%20studies%20of%20tumor%20microenvironment%20in%20mice%20treated%20with%20the%20mTOR%20inhibitor%20rapamycin&rft.jtitle=PloS%20one&rft.au=Saito,%20Keita&rft.date=2012-11-20&rft.volume=7&rft.issue=11&rft.spage=e49456&rft.epage=e49456&rft.pages=e49456-e49456&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049456&rft_dat=%3Cgale_plos_%3EA477056596%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326742604&rft_id=info:pmid/23185335&rft_galeid=A477056596&rft_doaj_id=oai_doaj_org_article_4ea830aae35c4085b5ff0c8ccba88170&rfr_iscdi=true |