On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII

Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophospho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e49293-e49293
Hauptverfasser: Gouet, Camilo, Aburto, Belen, Vergara, Cecilia, Sanhueza, Magdalena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e49293
container_issue 11
container_start_page e49293
container_title PloS one
container_volume 7
creator Gouet, Camilo
Aburto, Belen
Vergara, Cecilia
Sanhueza, Magdalena
description Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+) signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.
doi_str_mv 10.1371/journal.pone.0049293
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326739716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477091556</galeid><doaj_id>oai_doaj_org_article_2d7ce8b5b7884f9898be5a830740f435</doaj_id><sourcerecordid>A477091556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-51b013c03bdf1cf9f2a55ab3c24ba10c399c7ce908928119debc32ddec7fa49f3</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLB6LgrkmTtM0b4Vh8WDxd8OmdhDSZbLO0ydq04n57U7d3XOVeSAIJk9_8h5nMJMljjJaYFPjVzg-dk81y7x0sEaI84-ROcoo5yRZ5hsjdG_eT5EEIO4QYKfP8fnKSEUxZ3KfJj41L-xrSFlQtnQ1t6k0aDk7ue6tSDfsOQrDepdbpQYFOq0O6kh8_rNefXqbSpeC034LzQ4hEbSvb-26UODIPk3tGNgEeTedZ8u3tm6-r94vLzbv16uJyoXKe9QuGK4SJQqTSBivDTSYZkxVRGa0kRopwrgoFHJU8KzHmGipFMq1BFUZSbshZ8vSou298EFNlgsAkywvCC5xHYn0ktJc7se9sK7uD8NKKvwbfbYXsYsoNiEzHWGXFqqIsqeElLytgsiSooMhQwqLW6ynaULWgFbi-k81MdP7ibC22_pcglBNGaRR4Pgl0_ucAoRetDQqaRjqIlRQYM8xxUZQjev4Pent2E7WVMQHrjI9x1SgqLmhRII4ZG6nlLVRcGlqrYhsZG-0zhxczh8j08LvfyiEEsf7y-f_Zzfc5--wGW4Ns-jr4Zuhjo4U5SI-g6nwIHZjrImMkxim4qoYYp0BMUxDdntz8oGunq7YnfwDb4wD7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326739716</pqid></control><display><type>article</type><title>On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gouet, Camilo ; Aburto, Belen ; Vergara, Cecilia ; Sanhueza, Magdalena</creator><contributor>Norris, Christopher Mark</contributor><creatorcontrib>Gouet, Camilo ; Aburto, Belen ; Vergara, Cecilia ; Sanhueza, Magdalena ; Norris, Christopher Mark</creatorcontrib><description>Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+) signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049293</identifier><identifier>PMID: 23145145</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Brain ; Brain slice preparation ; Ca2+/calmodulin-dependent protein kinase II ; Calcium binding proteins ; Calcium Signaling - physiology ; Calcium signalling ; Calcium-binding protein ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - antagonists &amp; inhibitors ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Calmodulin ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; Cerebral blood flow ; Dendritic spines ; Glutamatergic transmission ; Glutamic acid receptors (ionotropic) ; Hippocampus ; Hippocampus - metabolism ; Homeostatic plasticity ; Inhibitors ; Ischemia ; Kinases ; Learning ; Long-term depression ; Long-Term Potentiation ; Long-Term Synaptic Depression ; Medical screening ; Memory ; Metabolic pathways ; N-Methyl-D-aspartic acid receptors ; Occlusion ; Peptides ; Phosphorylation ; Plasticity ; Postsynaptic density ; Proteasomes ; Protein biosynthesis ; Protein kinases ; Protein synthesis ; Protein Transport ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate - metabolism ; Receptors, N-Methyl-D-Aspartate - physiology ; Regulators ; RNA, Messenger - metabolism ; Saturation ; Synapses ; Synaptic depression ; Synaptic plasticity ; Synaptic strength</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49293-e49293</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Gouet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Gouet et al 2012 Gouet et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-51b013c03bdf1cf9f2a55ab3c24ba10c399c7ce908928119debc32ddec7fa49f3</citedby><cites>FETCH-LOGICAL-c692t-51b013c03bdf1cf9f2a55ab3c24ba10c399c7ce908928119debc32ddec7fa49f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23145145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Norris, Christopher Mark</contributor><creatorcontrib>Gouet, Camilo</creatorcontrib><creatorcontrib>Aburto, Belen</creatorcontrib><creatorcontrib>Vergara, Cecilia</creatorcontrib><creatorcontrib>Sanhueza, Magdalena</creatorcontrib><title>On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+) signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.</description><subject>Animals</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain slice preparation</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium binding proteins</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - antagonists &amp; inhibitors</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Calmodulin</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>Cerebral blood flow</subject><subject>Dendritic spines</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Homeostatic plasticity</subject><subject>Inhibitors</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Learning</subject><subject>Long-term depression</subject><subject>Long-Term Potentiation</subject><subject>Long-Term Synaptic Depression</subject><subject>Medical screening</subject><subject>Memory</subject><subject>Metabolic pathways</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Occlusion</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Plasticity</subject><subject>Postsynaptic density</subject><subject>Proteasomes</subject><subject>Protein biosynthesis</subject><subject>Protein kinases</subject><subject>Protein synthesis</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Regulators</subject><subject>RNA, Messenger - metabolism</subject><subject>Saturation</subject><subject>Synapses</subject><subject>Synaptic depression</subject><subject>Synaptic plasticity</subject><subject>Synaptic strength</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLB6LgrkmTtM0b4Vh8WDxd8OmdhDSZbLO0ydq04n57U7d3XOVeSAIJk9_8h5nMJMljjJaYFPjVzg-dk81y7x0sEaI84-ROcoo5yRZ5hsjdG_eT5EEIO4QYKfP8fnKSEUxZ3KfJj41L-xrSFlQtnQ1t6k0aDk7ue6tSDfsOQrDepdbpQYFOq0O6kh8_rNefXqbSpeC034LzQ4hEbSvb-26UODIPk3tGNgEeTedZ8u3tm6-r94vLzbv16uJyoXKe9QuGK4SJQqTSBivDTSYZkxVRGa0kRopwrgoFHJU8KzHmGipFMq1BFUZSbshZ8vSou298EFNlgsAkywvCC5xHYn0ktJc7se9sK7uD8NKKvwbfbYXsYsoNiEzHWGXFqqIsqeElLytgsiSooMhQwqLW6ynaULWgFbi-k81MdP7ibC22_pcglBNGaRR4Pgl0_ucAoRetDQqaRjqIlRQYM8xxUZQjev4Pent2E7WVMQHrjI9x1SgqLmhRII4ZG6nlLVRcGlqrYhsZG-0zhxczh8j08LvfyiEEsf7y-f_Zzfc5--wGW4Ns-jr4Zuhjo4U5SI-g6nwIHZjrImMkxim4qoYYp0BMUxDdntz8oGunq7YnfwDb4wD7</recordid><startdate>20121108</startdate><enddate>20121108</enddate><creator>Gouet, Camilo</creator><creator>Aburto, Belen</creator><creator>Vergara, Cecilia</creator><creator>Sanhueza, Magdalena</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121108</creationdate><title>On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII</title><author>Gouet, Camilo ; Aburto, Belen ; Vergara, Cecilia ; Sanhueza, Magdalena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-51b013c03bdf1cf9f2a55ab3c24ba10c399c7ce908928119debc32ddec7fa49f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain slice preparation</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium binding proteins</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - antagonists &amp; inhibitors</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Calmodulin</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>Cerebral blood flow</topic><topic>Dendritic spines</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Homeostatic plasticity</topic><topic>Inhibitors</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Learning</topic><topic>Long-term depression</topic><topic>Long-Term Potentiation</topic><topic>Long-Term Synaptic Depression</topic><topic>Medical screening</topic><topic>Memory</topic><topic>Metabolic pathways</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Occlusion</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Plasticity</topic><topic>Postsynaptic density</topic><topic>Proteasomes</topic><topic>Protein biosynthesis</topic><topic>Protein kinases</topic><topic>Protein synthesis</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Regulators</topic><topic>RNA, Messenger - metabolism</topic><topic>Saturation</topic><topic>Synapses</topic><topic>Synaptic depression</topic><topic>Synaptic plasticity</topic><topic>Synaptic strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouet, Camilo</creatorcontrib><creatorcontrib>Aburto, Belen</creatorcontrib><creatorcontrib>Vergara, Cecilia</creatorcontrib><creatorcontrib>Sanhueza, Magdalena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouet, Camilo</au><au>Aburto, Belen</au><au>Vergara, Cecilia</au><au>Sanhueza, Magdalena</au><au>Norris, Christopher Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-08</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49293</spage><epage>e49293</epage><pages>e49293-e49293</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca(2+) signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23145145</pmid><doi>10.1371/journal.pone.0049293</doi><tpages>e49293</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e49293-e49293
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326739716
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Biology
Brain
Brain slice preparation
Ca2+/calmodulin-dependent protein kinase II
Calcium binding proteins
Calcium Signaling - physiology
Calcium signalling
Calcium-binding protein
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - antagonists & inhibitors
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism
Calmodulin
Carrier Proteins - metabolism
Carrier Proteins - physiology
Cerebral blood flow
Dendritic spines
Glutamatergic transmission
Glutamic acid receptors (ionotropic)
Hippocampus
Hippocampus - metabolism
Homeostatic plasticity
Inhibitors
Ischemia
Kinases
Learning
Long-term depression
Long-Term Potentiation
Long-Term Synaptic Depression
Medical screening
Memory
Metabolic pathways
N-Methyl-D-aspartic acid receptors
Occlusion
Peptides
Phosphorylation
Plasticity
Postsynaptic density
Proteasomes
Protein biosynthesis
Protein kinases
Protein synthesis
Protein Transport
Proteins
Rats
Rats, Sprague-Dawley
Receptors, N-Methyl-D-Aspartate - metabolism
Receptors, N-Methyl-D-Aspartate - physiology
Regulators
RNA, Messenger - metabolism
Saturation
Synapses
Synaptic depression
Synaptic plasticity
Synaptic strength
title On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanism%20of%20synaptic%20depression%20induced%20by%20CaMKIIN,%20an%20endogenous%20inhibitor%20of%20CaMKII&rft.jtitle=PloS%20one&rft.au=Gouet,%20Camilo&rft.date=2012-11-08&rft.volume=7&rft.issue=11&rft.spage=e49293&rft.epage=e49293&rft.pages=e49293-e49293&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049293&rft_dat=%3Cgale_plos_%3EA477091556%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326739716&rft_id=info:pmid/23145145&rft_galeid=A477091556&rft_doaj_id=oai_doaj_org_article_2d7ce8b5b7884f9898be5a830740f435&rfr_iscdi=true