Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction

The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e49153-e49153
Hauptverfasser: Mander, Luke, Wesseln, Cassandra J, McElwain, Jennifer C, Punyasena, Surangi W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e49153
container_issue 11
container_start_page e49153
container_title PloS one
container_volume 7
creator Mander, Luke
Wesseln, Cassandra J
McElwain, Jennifer C
Punyasena, Surangi W
description The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic-Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.
doi_str_mv 10.1371/journal.pone.0049153
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326733378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477091696</galeid><doaj_id>oai_doaj_org_article_e7803394dff943aebfc1751f41892e26</doaj_id><sourcerecordid>A477091696</sourcerecordid><originalsourceid>FETCH-LOGICAL-a715t-56e86ab1d8b92d14c06c4e77276930d3be8cf10406635d005217097ec8c4aa013</originalsourceid><addsrcrecordid>eNqNk82O1DAMgCsEYpeFN0BQCQnBYYakSf84IK1W_AxaaSUYuEae1G0zpEk3aRG8Aw9NOtNdzaA9oB7i2p8d27Gj6CklS8py-mZrR2dAL3trcEkIL2nK7kWntGTJIksIu38gn0SPvN8SkrIiyx5GJwmjPKWEn0Z_1g7kD2WaeIC-tcZ2SsYOG9Whj0c_GWSLQQk6BlPFHcoWzO63gg4ajG0d91ZrNDu7761D_zbIMf6CrtcY18528dBivHYKvFdy8Xl0OyHuwhG4QRk5KGseRw9q0B6fzOdZ9O3D-_XFp8Xl1cfVxfnlAnKaDos0wyKDDa2KTZlUlEuSSY55nuRZyUjFNljIOlRHsoylVag6oTkpc5SF5ACEsrPo-T5ur60XcyO9oCzJcsZYXgRitScqC1vRO9WB-y0sKLFTWNcIcIOSGgXmBWGs5FVdl5wBbmpJ85TWnBZlgkkWYr2bbxs3HVYSzeBAHwU9thjVisb-FIyXCUumdF_NAZy9HtEPolNeotZg0I4hb5rSMqGc8IC--Ae9u7qZaiAUoExtw71yCirOeR56RbNyynt5BxW-apqHMHW1Cvojh9dHDoEZwuM2MHovVl-__D979f2YfXnAtgh6aL3V4zQy_hjke1A6673D-rbJlIhpaW66IaalEfPSBLdnhw9063SzJewvMc0SjA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326733378</pqid></control><display><type>article</type><title>Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mander, Luke ; Wesseln, Cassandra J ; McElwain, Jennifer C ; Punyasena, Surangi W</creator><contributor>Butler, Richard J.</contributor><creatorcontrib>Mander, Luke ; Wesseln, Cassandra J ; McElwain, Jennifer C ; Punyasena, Surangi W ; Butler, Richard J.</creatorcontrib><description>The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic-Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049153</identifier><identifier>PMID: 23145104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Chemical damage ; Earth Sciences ; Environmental changes ; Extinct species ; Extinction ; Extinction, Biological ; Fossils ; Geology ; Greenland ; Intervals ; Jurassic ; Jurassic period ; Mass extinction ; Mass extinctions ; Oxidation ; Paleontology - methods ; Plant biology ; Plants - chemistry ; Plants - ultrastructure ; Pollen ; Pollen - chemistry ; Pollen - ultrastructure ; Sediments ; Spores ; Spores - chemistry ; Spores - ultrastructure ; Stratigraphy ; Stress, Mechanical ; Taphonomy ; Taxonomy ; Triassic ; Vegetation</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49153-e49153</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Mander et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Mander et al 2012 Mander et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a715t-56e86ab1d8b92d14c06c4e77276930d3be8cf10406635d005217097ec8c4aa013</citedby><cites>FETCH-LOGICAL-a715t-56e86ab1d8b92d14c06c4e77276930d3be8cf10406635d005217097ec8c4aa013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492321/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492321/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23145104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Butler, Richard J.</contributor><creatorcontrib>Mander, Luke</creatorcontrib><creatorcontrib>Wesseln, Cassandra J</creatorcontrib><creatorcontrib>McElwain, Jennifer C</creatorcontrib><creatorcontrib>Punyasena, Surangi W</creatorcontrib><title>Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic-Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.</description><subject>Biology</subject><subject>Chemical damage</subject><subject>Earth Sciences</subject><subject>Environmental changes</subject><subject>Extinct species</subject><subject>Extinction</subject><subject>Extinction, Biological</subject><subject>Fossils</subject><subject>Geology</subject><subject>Greenland</subject><subject>Intervals</subject><subject>Jurassic</subject><subject>Jurassic period</subject><subject>Mass extinction</subject><subject>Mass extinctions</subject><subject>Oxidation</subject><subject>Paleontology - methods</subject><subject>Plant biology</subject><subject>Plants - chemistry</subject><subject>Plants - ultrastructure</subject><subject>Pollen</subject><subject>Pollen - chemistry</subject><subject>Pollen - ultrastructure</subject><subject>Sediments</subject><subject>Spores</subject><subject>Spores - chemistry</subject><subject>Spores - ultrastructure</subject><subject>Stratigraphy</subject><subject>Stress, Mechanical</subject><subject>Taphonomy</subject><subject>Taxonomy</subject><subject>Triassic</subject><subject>Vegetation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk82O1DAMgCsEYpeFN0BQCQnBYYakSf84IK1W_AxaaSUYuEae1G0zpEk3aRG8Aw9NOtNdzaA9oB7i2p8d27Gj6CklS8py-mZrR2dAL3trcEkIL2nK7kWntGTJIksIu38gn0SPvN8SkrIiyx5GJwmjPKWEn0Z_1g7kD2WaeIC-tcZ2SsYOG9Whj0c_GWSLQQk6BlPFHcoWzO63gg4ajG0d91ZrNDu7761D_zbIMf6CrtcY18528dBivHYKvFdy8Xl0OyHuwhG4QRk5KGseRw9q0B6fzOdZ9O3D-_XFp8Xl1cfVxfnlAnKaDos0wyKDDa2KTZlUlEuSSY55nuRZyUjFNljIOlRHsoylVag6oTkpc5SF5ACEsrPo-T5ur60XcyO9oCzJcsZYXgRitScqC1vRO9WB-y0sKLFTWNcIcIOSGgXmBWGs5FVdl5wBbmpJ85TWnBZlgkkWYr2bbxs3HVYSzeBAHwU9thjVisb-FIyXCUumdF_NAZy9HtEPolNeotZg0I4hb5rSMqGc8IC--Ae9u7qZaiAUoExtw71yCirOeR56RbNyynt5BxW-apqHMHW1Cvojh9dHDoEZwuM2MHovVl-__D979f2YfXnAtgh6aL3V4zQy_hjke1A6673D-rbJlIhpaW66IaalEfPSBLdnhw9063SzJewvMc0SjA</recordid><startdate>20121107</startdate><enddate>20121107</enddate><creator>Mander, Luke</creator><creator>Wesseln, Cassandra J</creator><creator>McElwain, Jennifer C</creator><creator>Punyasena, Surangi W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121107</creationdate><title>Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction</title><author>Mander, Luke ; Wesseln, Cassandra J ; McElwain, Jennifer C ; Punyasena, Surangi W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a715t-56e86ab1d8b92d14c06c4e77276930d3be8cf10406635d005217097ec8c4aa013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Chemical damage</topic><topic>Earth Sciences</topic><topic>Environmental changes</topic><topic>Extinct species</topic><topic>Extinction</topic><topic>Extinction, Biological</topic><topic>Fossils</topic><topic>Geology</topic><topic>Greenland</topic><topic>Intervals</topic><topic>Jurassic</topic><topic>Jurassic period</topic><topic>Mass extinction</topic><topic>Mass extinctions</topic><topic>Oxidation</topic><topic>Paleontology - methods</topic><topic>Plant biology</topic><topic>Plants - chemistry</topic><topic>Plants - ultrastructure</topic><topic>Pollen</topic><topic>Pollen - chemistry</topic><topic>Pollen - ultrastructure</topic><topic>Sediments</topic><topic>Spores</topic><topic>Spores - chemistry</topic><topic>Spores - ultrastructure</topic><topic>Stratigraphy</topic><topic>Stress, Mechanical</topic><topic>Taphonomy</topic><topic>Taxonomy</topic><topic>Triassic</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mander, Luke</creatorcontrib><creatorcontrib>Wesseln, Cassandra J</creatorcontrib><creatorcontrib>McElwain, Jennifer C</creatorcontrib><creatorcontrib>Punyasena, Surangi W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mander, Luke</au><au>Wesseln, Cassandra J</au><au>McElwain, Jennifer C</au><au>Punyasena, Surangi W</au><au>Butler, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-07</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49153</spage><epage>e49153</epage><pages>e49153-e49153</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic-Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23145104</pmid><doi>10.1371/journal.pone.0049153</doi><tpages>e49153</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e49153-e49153
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326733378
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Biology
Chemical damage
Earth Sciences
Environmental changes
Extinct species
Extinction
Extinction, Biological
Fossils
Geology
Greenland
Intervals
Jurassic
Jurassic period
Mass extinction
Mass extinctions
Oxidation
Paleontology - methods
Plant biology
Plants - chemistry
Plants - ultrastructure
Pollen
Pollen - chemistry
Pollen - ultrastructure
Sediments
Spores
Spores - chemistry
Spores - ultrastructure
Stratigraphy
Stress, Mechanical
Taphonomy
Taxonomy
Triassic
Vegetation
title Tracking taphonomic regimes using chemical and mechanical damage of pollen and spores: an example from the Triassic-Jurassic mass extinction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20taphonomic%20regimes%20using%20chemical%20and%20mechanical%20damage%20of%20pollen%20and%20spores:%20an%20example%20from%20the%20Triassic-Jurassic%20mass%20extinction&rft.jtitle=PloS%20one&rft.au=Mander,%20Luke&rft.date=2012-11-07&rft.volume=7&rft.issue=11&rft.spage=e49153&rft.epage=e49153&rft.pages=e49153-e49153&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049153&rft_dat=%3Cgale_plos_%3EA477091696%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326733378&rft_id=info:pmid/23145104&rft_galeid=A477091696&rft_doaj_id=oai_doaj_org_article_e7803394dff943aebfc1751f41892e26&rfr_iscdi=true