Autoinducers act as biological timers in Vibrio harveyi

Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-10, Vol.7 (10), p.e48310-e48310
Hauptverfasser: Anetzberger, Claudia, Reiger, Matthias, Fekete, Agnes, Schell, Ursula, Stambrau, Nina, Plener, Laure, Kopka, Joachim, Schmitt-Kopplin, Phillippe, Hilbi, Hubert, Jung, Kirsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e48310
container_issue 10
container_start_page e48310
container_title PloS one
container_volume 7
creator Anetzberger, Claudia
Reiger, Matthias
Fekete, Agnes
Schell, Ursula
Stambrau, Nina
Plener, Laure
Kopka, Joachim
Schmitt-Kopplin, Phillippe
Hilbi, Hubert
Jung, Kirsten
description Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.
doi_str_mv 10.1371/journal.pone.0048310
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326561766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477034225</galeid><doaj_id>oai_doaj_org_article_71b617aaf9dd47e0b22a32f57a090469</doaj_id><sourcerecordid>A477034225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-78d51d3056fe49e34a73fe58e227e5b33b06d3436340c19ae364c3c78cda91d33</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xn5kZYStWFQsGP3oYzmcxuluxkTTLF_vtm3WnZkV5ILhKS531PTvIWxWuM5phK_Gnjh9CDm-98b-YIsYpi9KQ4xTUlM0EQfXq0PilexLhBiNNKiOfFCaEYI0LkaSEXQ_K2bwdtQixBpxJi2Vjv_MpqcGWy2_2B7ctr2wTryzWEG3NrXxbPOnDRvBrns-LXl4uf599ml1dfl-eLy5mWvEozWbUctxRx0RlWG8pA0s7wyuTihjeUNki0lFFBGdK4BkMF01TLSrdQZyE9K94efHfORzX2HBWmRHCBpRCZWB6I1sNG7YLdQrhVHqz6u-HDSkFIVjujJG6yBqCr25ZJgxpCgJKOS0A1YqLOXp_HakOzNa02fQrgJqbTk96u1crfKMoqQjDJBh9Gg-B_DyYmtbVRG-egN37I98aESc5ZjTL67h_08e5GagW5Adt3PtfVe1O1YFIiygjhmZo_QuXRmq3VOSCdzfsTwceJIDPJ_EkrGGJUyx_f_5-9up6y74_YtQGX1tG7IVnfxynIDqAOPsZguodHxkjt833_GmqfbzXmO8veHH_Qg-g-0PQOfmzytw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326561766</pqid></control><display><type>article</type><title>Autoinducers act as biological timers in Vibrio harveyi</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Anetzberger, Claudia ; Reiger, Matthias ; Fekete, Agnes ; Schell, Ursula ; Stambrau, Nina ; Plener, Laure ; Kopka, Joachim ; Schmitt-Kopplin, Phillippe ; Hilbi, Hubert ; Jung, Kirsten</creator><contributor>Misra, Rajeev</contributor><creatorcontrib>Anetzberger, Claudia ; Reiger, Matthias ; Fekete, Agnes ; Schell, Ursula ; Stambrau, Nina ; Plener, Laure ; Kopka, Joachim ; Schmitt-Kopplin, Phillippe ; Hilbi, Hubert ; Jung, Kirsten ; Misra, Rajeev</creatorcontrib><description>Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0048310</identifier><identifier>PMID: 23110227</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacterial Proteins - metabolism ; Biochemistry ; Biofilms ; Biology ; Bioluminescence ; Cell culture ; Cell density ; Cooperation ; E coli ; Enzymes ; Escherichia coli ; Excretion ; Gene expression ; Gene Expression Regulation, Bacterial ; Genes ; Kinases ; Liquid culture ; Phase transitions ; Phosphorylation ; Proteins ; Quorum Sensing - physiology ; Receptors ; Science ; Sensors ; Signaling ; Stationary phase ; Temporal variations ; Timing devices ; Vibrio - metabolism ; Vibrio - physiology ; Vibrio cholerae ; Vibrio harveyi ; Water-borne diseases ; Waterborne diseases</subject><ispartof>PloS one, 2012-10, Vol.7 (10), p.e48310-e48310</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Anetzberger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Anetzberger et al 2012 Anetzberger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-78d51d3056fe49e34a73fe58e227e5b33b06d3436340c19ae364c3c78cda91d33</citedby><cites>FETCH-LOGICAL-c758t-78d51d3056fe49e34a73fe58e227e5b33b06d3436340c19ae364c3c78cda91d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482212/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482212/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23110227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Misra, Rajeev</contributor><creatorcontrib>Anetzberger, Claudia</creatorcontrib><creatorcontrib>Reiger, Matthias</creatorcontrib><creatorcontrib>Fekete, Agnes</creatorcontrib><creatorcontrib>Schell, Ursula</creatorcontrib><creatorcontrib>Stambrau, Nina</creatorcontrib><creatorcontrib>Plener, Laure</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Schmitt-Kopplin, Phillippe</creatorcontrib><creatorcontrib>Hilbi, Hubert</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><title>Autoinducers act as biological timers in Vibrio harveyi</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.</description><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biology</subject><subject>Bioluminescence</subject><subject>Cell culture</subject><subject>Cell density</subject><subject>Cooperation</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Excretion</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Kinases</subject><subject>Liquid culture</subject><subject>Phase transitions</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Quorum Sensing - physiology</subject><subject>Receptors</subject><subject>Science</subject><subject>Sensors</subject><subject>Signaling</subject><subject>Stationary phase</subject><subject>Temporal variations</subject><subject>Timing devices</subject><subject>Vibrio - metabolism</subject><subject>Vibrio - physiology</subject><subject>Vibrio cholerae</subject><subject>Vibrio harveyi</subject><subject>Water-borne diseases</subject><subject>Waterborne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xn5kZYStWFQsGP3oYzmcxuluxkTTLF_vtm3WnZkV5ILhKS531PTvIWxWuM5phK_Gnjh9CDm-98b-YIsYpi9KQ4xTUlM0EQfXq0PilexLhBiNNKiOfFCaEYI0LkaSEXQ_K2bwdtQixBpxJi2Vjv_MpqcGWy2_2B7ctr2wTryzWEG3NrXxbPOnDRvBrns-LXl4uf599ml1dfl-eLy5mWvEozWbUctxRx0RlWG8pA0s7wyuTihjeUNki0lFFBGdK4BkMF01TLSrdQZyE9K94efHfORzX2HBWmRHCBpRCZWB6I1sNG7YLdQrhVHqz6u-HDSkFIVjujJG6yBqCr25ZJgxpCgJKOS0A1YqLOXp_HakOzNa02fQrgJqbTk96u1crfKMoqQjDJBh9Gg-B_DyYmtbVRG-egN37I98aESc5ZjTL67h_08e5GagW5Adt3PtfVe1O1YFIiygjhmZo_QuXRmq3VOSCdzfsTwceJIDPJ_EkrGGJUyx_f_5-9up6y74_YtQGX1tG7IVnfxynIDqAOPsZguodHxkjt833_GmqfbzXmO8veHH_Qg-g-0PQOfmzytw</recordid><startdate>20121026</startdate><enddate>20121026</enddate><creator>Anetzberger, Claudia</creator><creator>Reiger, Matthias</creator><creator>Fekete, Agnes</creator><creator>Schell, Ursula</creator><creator>Stambrau, Nina</creator><creator>Plener, Laure</creator><creator>Kopka, Joachim</creator><creator>Schmitt-Kopplin, Phillippe</creator><creator>Hilbi, Hubert</creator><creator>Jung, Kirsten</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121026</creationdate><title>Autoinducers act as biological timers in Vibrio harveyi</title><author>Anetzberger, Claudia ; Reiger, Matthias ; Fekete, Agnes ; Schell, Ursula ; Stambrau, Nina ; Plener, Laure ; Kopka, Joachim ; Schmitt-Kopplin, Phillippe ; Hilbi, Hubert ; Jung, Kirsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-78d51d3056fe49e34a73fe58e227e5b33b06d3436340c19ae364c3c78cda91d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biology</topic><topic>Bioluminescence</topic><topic>Cell culture</topic><topic>Cell density</topic><topic>Cooperation</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Excretion</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Kinases</topic><topic>Liquid culture</topic><topic>Phase transitions</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Quorum Sensing - physiology</topic><topic>Receptors</topic><topic>Science</topic><topic>Sensors</topic><topic>Signaling</topic><topic>Stationary phase</topic><topic>Temporal variations</topic><topic>Timing devices</topic><topic>Vibrio - metabolism</topic><topic>Vibrio - physiology</topic><topic>Vibrio cholerae</topic><topic>Vibrio harveyi</topic><topic>Water-borne diseases</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anetzberger, Claudia</creatorcontrib><creatorcontrib>Reiger, Matthias</creatorcontrib><creatorcontrib>Fekete, Agnes</creatorcontrib><creatorcontrib>Schell, Ursula</creatorcontrib><creatorcontrib>Stambrau, Nina</creatorcontrib><creatorcontrib>Plener, Laure</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Schmitt-Kopplin, Phillippe</creatorcontrib><creatorcontrib>Hilbi, Hubert</creatorcontrib><creatorcontrib>Jung, Kirsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anetzberger, Claudia</au><au>Reiger, Matthias</au><au>Fekete, Agnes</au><au>Schell, Ursula</au><au>Stambrau, Nina</au><au>Plener, Laure</au><au>Kopka, Joachim</au><au>Schmitt-Kopplin, Phillippe</au><au>Hilbi, Hubert</au><au>Jung, Kirsten</au><au>Misra, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoinducers act as biological timers in Vibrio harveyi</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-10-26</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>e48310</spage><epage>e48310</epage><pages>e48310-e48310</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23110227</pmid><doi>10.1371/journal.pone.0048310</doi><tpages>e48310</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-10, Vol.7 (10), p.e48310-e48310
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326561766
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacterial Proteins - metabolism
Biochemistry
Biofilms
Biology
Bioluminescence
Cell culture
Cell density
Cooperation
E coli
Enzymes
Escherichia coli
Excretion
Gene expression
Gene Expression Regulation, Bacterial
Genes
Kinases
Liquid culture
Phase transitions
Phosphorylation
Proteins
Quorum Sensing - physiology
Receptors
Science
Sensors
Signaling
Stationary phase
Temporal variations
Timing devices
Vibrio - metabolism
Vibrio - physiology
Vibrio cholerae
Vibrio harveyi
Water-borne diseases
Waterborne diseases
title Autoinducers act as biological timers in Vibrio harveyi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoinducers%20act%20as%20biological%20timers%20in%20Vibrio%20harveyi&rft.jtitle=PloS%20one&rft.au=Anetzberger,%20Claudia&rft.date=2012-10-26&rft.volume=7&rft.issue=10&rft.spage=e48310&rft.epage=e48310&rft.pages=e48310-e48310&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0048310&rft_dat=%3Cgale_plos_%3EA477034225%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326561766&rft_id=info:pmid/23110227&rft_galeid=A477034225&rft_doaj_id=oai_doaj_org_article_71b617aaf9dd47e0b22a32f57a090469&rfr_iscdi=true