Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains
In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-10, Vol.7 (10), p.e47465-e47465 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e47465 |
---|---|
container_issue | 10 |
container_start_page | e47465 |
container_title | PloS one |
container_volume | 7 |
creator | Chiang, Chung-Wei Chen, Yu-Chieh Lu, Juu-Chin Hsiao, Yu-Tien Chang, Che-Wei Huang, Pin-Chien Chang, Yu-Tzu Chang, Payne Y Wang, Chih-Tien |
description | In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca(2+)-binding domains (C2A and C2B) which serve as Ca(2+) sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+) binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics.
Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+) sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+)-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+) imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+) transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+) transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+) transients.
Through Ca(2+) binding to C2A or C2B, the Ca(2+) sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics. |
doi_str_mv | 10.1371/journal.pone.0047465 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326560475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498257927</galeid><doaj_id>oai_doaj_org_article_75a7cc740b094e3dae6a79d487df4e43</doaj_id><sourcerecordid>A498257927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a5d84108aadc7ca9d4dd89852877e593304a9228a8fb52b7b4098ae5b62307d3</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrZl8TCY3Qi1-FBYW3MXbcCZJpykzSXeSKfbC_2667S4d2QvJRULyvO_JOcnJstcFmhaEF5_WfugdtNONd2aKEOW0ZE-y80IQPCkxIk9P1mfZixDWCDFSleXz7AwTJIoSs_Psz_XOwSb6CE1nXb7Ie9MMLUQT8g3EaHpndB5SjAjO-CHkoKLd2rjLEx1XJtdma1q_sa7Je4hJHq2DfGshV9AqO3R5bZ3eH0d_J5jj2Zdc-w6sCy-zZ0tog3l1nC-ym29fb-Y_JpdX3xfz2eVElQLHCTBd0QJVAFpxBUJTrStRMVxxbpggBFEQGFdQLWuGa15TJCowrC5TolyTi-ztwXbT-iCPhQuyILhkZaocS8TiQGgPa7npbQf9Tnqw8m7D942EPlrVGskZcKU4RTUS1BANpgSerlRxvaSGkuT1-RhtqDujlXGxh3ZkOj5xdiUbv5WEciwESgYfjga9vx1MiLKzQZm2PTyBLIqCCobKah_r3T_o49kdqQZSAtYtfYqr9qZyRkWFGReYJ2r6CJWGNp1V6ZctbdofCT6OBImJ5ndsYAhBLq5__j979WvMvj9hVwbauAq-HaL1LoxBegBV70PozfKhyAWS-ya5r4bcN4k8NkmSvTl9oAfRfVeQvx5PDb0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326560475</pqid></control><display><type>article</type><title>Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chiang, Chung-Wei ; Chen, Yu-Chieh ; Lu, Juu-Chin ; Hsiao, Yu-Tien ; Chang, Che-Wei ; Huang, Pin-Chien ; Chang, Yu-Tzu ; Chang, Payne Y ; Wang, Chih-Tien</creator><creatorcontrib>Chiang, Chung-Wei ; Chen, Yu-Chieh ; Lu, Juu-Chin ; Hsiao, Yu-Tien ; Chang, Che-Wei ; Huang, Pin-Chien ; Chang, Yu-Tzu ; Chang, Payne Y ; Wang, Chih-Tien</creatorcontrib><description>In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca(2+)-binding domains (C2A and C2B) which serve as Ca(2+) sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+) binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics.
Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+) sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+)-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+) imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+) transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+) transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+) transients.
Through Ca(2+) binding to C2A or C2B, the Ca(2+) sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0047465</identifier><identifier>PMID: 23091625</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amacrine cells ; Animals ; Binding ; Biology ; Calcium ; Calcium - metabolism ; Calcium imaging ; Calcium signalling ; Cellular biology ; Cholinergic Neurons - metabolism ; Confocal microscopy ; Dynamic tests ; Dynamics ; Electroporation ; Gene Expression Regulation ; Genomes ; Horizontal cells ; Interneurons ; Life sciences ; Machinery ; Machinery and equipment ; Medicine ; Microscopy ; Mutants ; Neonates ; Neurons ; Neurosciences ; Neurotransmitter release ; Neurotransmitters ; Physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Proteins ; Rats ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; Retina ; Retina - cytology ; Retina - metabolism ; Retina - physiology ; Retinal ganglion cells ; Schizophrenia ; Sensors ; Studies ; Synapses ; Synapses - metabolism ; Synaptic Transmission - physiology ; Synaptotagmin ; Synaptotagmin I - chemistry ; Synaptotagmin I - genetics ; Synaptotagmin I - metabolism</subject><ispartof>PloS one, 2012-10, Vol.7 (10), p.e47465-e47465</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Chiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Chiang et al 2012 Chiang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a5d84108aadc7ca9d4dd89852877e593304a9228a8fb52b7b4098ae5b62307d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23091625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiang, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Yu-Chieh</creatorcontrib><creatorcontrib>Lu, Juu-Chin</creatorcontrib><creatorcontrib>Hsiao, Yu-Tien</creatorcontrib><creatorcontrib>Chang, Che-Wei</creatorcontrib><creatorcontrib>Huang, Pin-Chien</creatorcontrib><creatorcontrib>Chang, Yu-Tzu</creatorcontrib><creatorcontrib>Chang, Payne Y</creatorcontrib><creatorcontrib>Wang, Chih-Tien</creatorcontrib><title>Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca(2+)-binding domains (C2A and C2B) which serve as Ca(2+) sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+) binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics.
Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+) sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+)-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+) imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+) transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+) transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+) transients.
Through Ca(2+) binding to C2A or C2B, the Ca(2+) sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.</description><subject>Amacrine cells</subject><subject>Animals</subject><subject>Binding</subject><subject>Biology</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Cellular biology</subject><subject>Cholinergic Neurons - metabolism</subject><subject>Confocal microscopy</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electroporation</subject><subject>Gene Expression Regulation</subject><subject>Genomes</subject><subject>Horizontal cells</subject><subject>Interneurons</subject><subject>Life sciences</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Medicine</subject><subject>Microscopy</subject><subject>Mutants</subject><subject>Neonates</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retina - metabolism</subject><subject>Retina - physiology</subject><subject>Retinal ganglion cells</subject><subject>Schizophrenia</subject><subject>Sensors</subject><subject>Studies</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptotagmin</subject><subject>Synaptotagmin I - chemistry</subject><subject>Synaptotagmin I - genetics</subject><subject>Synaptotagmin I - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrZl8TCY3Qi1-FBYW3MXbcCZJpykzSXeSKfbC_2667S4d2QvJRULyvO_JOcnJstcFmhaEF5_WfugdtNONd2aKEOW0ZE-y80IQPCkxIk9P1mfZixDWCDFSleXz7AwTJIoSs_Psz_XOwSb6CE1nXb7Ie9MMLUQT8g3EaHpndB5SjAjO-CHkoKLd2rjLEx1XJtdma1q_sa7Je4hJHq2DfGshV9AqO3R5bZ3eH0d_J5jj2Zdc-w6sCy-zZ0tog3l1nC-ym29fb-Y_JpdX3xfz2eVElQLHCTBd0QJVAFpxBUJTrStRMVxxbpggBFEQGFdQLWuGa15TJCowrC5TolyTi-ztwXbT-iCPhQuyILhkZaocS8TiQGgPa7npbQf9Tnqw8m7D942EPlrVGskZcKU4RTUS1BANpgSerlRxvaSGkuT1-RhtqDujlXGxh3ZkOj5xdiUbv5WEciwESgYfjga9vx1MiLKzQZm2PTyBLIqCCobKah_r3T_o49kdqQZSAtYtfYqr9qZyRkWFGReYJ2r6CJWGNp1V6ZctbdofCT6OBImJ5ndsYAhBLq5__j979WvMvj9hVwbauAq-HaL1LoxBegBV70PozfKhyAWS-ya5r4bcN4k8NkmSvTl9oAfRfVeQvx5PDb0</recordid><startdate>20121016</startdate><enddate>20121016</enddate><creator>Chiang, Chung-Wei</creator><creator>Chen, Yu-Chieh</creator><creator>Lu, Juu-Chin</creator><creator>Hsiao, Yu-Tien</creator><creator>Chang, Che-Wei</creator><creator>Huang, Pin-Chien</creator><creator>Chang, Yu-Tzu</creator><creator>Chang, Payne Y</creator><creator>Wang, Chih-Tien</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121016</creationdate><title>Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains</title><author>Chiang, Chung-Wei ; Chen, Yu-Chieh ; Lu, Juu-Chin ; Hsiao, Yu-Tien ; Chang, Che-Wei ; Huang, Pin-Chien ; Chang, Yu-Tzu ; Chang, Payne Y ; Wang, Chih-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a5d84108aadc7ca9d4dd89852877e593304a9228a8fb52b7b4098ae5b62307d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amacrine cells</topic><topic>Animals</topic><topic>Binding</topic><topic>Biology</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Cellular biology</topic><topic>Cholinergic Neurons - metabolism</topic><topic>Confocal microscopy</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electroporation</topic><topic>Gene Expression Regulation</topic><topic>Genomes</topic><topic>Horizontal cells</topic><topic>Interneurons</topic><topic>Life sciences</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Medicine</topic><topic>Microscopy</topic><topic>Mutants</topic><topic>Neonates</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retina - metabolism</topic><topic>Retina - physiology</topic><topic>Retinal ganglion cells</topic><topic>Schizophrenia</topic><topic>Sensors</topic><topic>Studies</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptotagmin</topic><topic>Synaptotagmin I - chemistry</topic><topic>Synaptotagmin I - genetics</topic><topic>Synaptotagmin I - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Yu-Chieh</creatorcontrib><creatorcontrib>Lu, Juu-Chin</creatorcontrib><creatorcontrib>Hsiao, Yu-Tien</creatorcontrib><creatorcontrib>Chang, Che-Wei</creatorcontrib><creatorcontrib>Huang, Pin-Chien</creatorcontrib><creatorcontrib>Chang, Yu-Tzu</creatorcontrib><creatorcontrib>Chang, Payne Y</creatorcontrib><creatorcontrib>Wang, Chih-Tien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Chung-Wei</au><au>Chen, Yu-Chieh</au><au>Lu, Juu-Chin</au><au>Hsiao, Yu-Tien</au><au>Chang, Che-Wei</au><au>Huang, Pin-Chien</au><au>Chang, Yu-Tzu</au><au>Chang, Payne Y</au><au>Wang, Chih-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-10-16</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>e47465</spage><epage>e47465</epage><pages>e47465-e47465</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca(2+)-binding domains (C2A and C2B) which serve as Ca(2+) sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+) binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics.
Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+) sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+)-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+) imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+) transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+) transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+) transients.
Through Ca(2+) binding to C2A or C2B, the Ca(2+) sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23091625</pmid><doi>10.1371/journal.pone.0047465</doi><tpages>e47465</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-10, Vol.7 (10), p.e47465-e47465 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326560475 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amacrine cells Animals Binding Biology Calcium Calcium - metabolism Calcium imaging Calcium signalling Cellular biology Cholinergic Neurons - metabolism Confocal microscopy Dynamic tests Dynamics Electroporation Gene Expression Regulation Genomes Horizontal cells Interneurons Life sciences Machinery Machinery and equipment Medicine Microscopy Mutants Neonates Neurons Neurosciences Neurotransmitter release Neurotransmitters Physiology Protein Binding Protein Interaction Domains and Motifs Proteins Rats Receptors, AMPA - genetics Receptors, AMPA - metabolism Retina Retina - cytology Retina - metabolism Retina - physiology Retinal ganglion cells Schizophrenia Sensors Studies Synapses Synapses - metabolism Synaptic Transmission - physiology Synaptotagmin Synaptotagmin I - chemistry Synaptotagmin I - genetics Synaptotagmin I - metabolism |
title | Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptotagmin%20I%20regulates%20patterned%20spontaneous%20activity%20in%20the%20developing%20rat%20retina%20via%20calcium%20binding%20to%20the%20C2AB%20domains&rft.jtitle=PloS%20one&rft.au=Chiang,%20Chung-Wei&rft.date=2012-10-16&rft.volume=7&rft.issue=10&rft.spage=e47465&rft.epage=e47465&rft.pages=e47465-e47465&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0047465&rft_dat=%3Cgale_plos_%3EA498257927%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326560475&rft_id=info:pmid/23091625&rft_galeid=A498257927&rft_doaj_id=oai_doaj_org_article_75a7cc740b094e3dae6a79d487df4e43&rfr_iscdi=true |