The shape of the urine stream--from biophysics to diagnostics
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is u...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-10, Vol.7 (10), p.e47133-e47133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e47133 |
---|---|
container_issue | 10 |
container_start_page | e47133 |
container_title | PloS one |
container_volume | 7 |
creator | Wheeler, Andrew P S Morad, Samir Buchholz, Noor Knight, Martin M |
description | We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (± 2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation. |
doi_str_mv | 10.1371/journal.pone.0047133 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326560344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498258219</galeid><doaj_id>oai_doaj_org_article_393ff27d2ecd4697801ae97bef98814f</doaj_id><sourcerecordid>A498258219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ca8f105c13402ce6e857d1210ee0d0d5175ae79333b5113b7a1585b21f88c66a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx5ymaZMLhWXxY2BhQVdvQ5qeTDO0zZi04v57M053mcpeSC6SnDznPTnJmyTPgayAVvBu6yY_qG61cwOuCCkqoPRBcgqC5lmZE_rwaH2SPAlhSwijvCwfJyc5JQJKIk6T99ctpqFVO0ydSce4mbwdYmj0qPosM971aW3drr0JVod0dGlj1WZwYYzbp8kjo7qAz-b5LPn-6eP1xZfs8urz-uL8MtMV42OmFTdAmAZakFxjiZxVDeRAEElDGgYVU1gJSmnNAGhdKWCc1TkYznVZKnqWvDzo7joX5Nx5kEDzkpWEFkUk1geicWord972yt9Ip6z8G3B-I5WPV-5QUkGNyasmR90Upag4AYWiqtEIzqEwUevDXG2qe2w0DqNX3UJ0eTLYVm7cL0mLipJCRIE3s4B3PycMo-xt0Nh1akA3xXsDFIKRkkFEX_2D3t_dTG1UbMAOxsW6ei8qzwvBc8Zz2Jdd3UPF0WBvdbSJsTG-SHi7SIjMiL_HjZpCkOtvX_-fvfqxZF8fsS2qbmyD66bRuiEsweIAau9C8GjuHhmI3Lv89jXk3uVydnlMe3H8QXdJt7amfwCjFvUP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326560344</pqid></control><display><type>article</type><title>The shape of the urine stream--from biophysics to diagnostics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wheeler, Andrew P S ; Morad, Samir ; Buchholz, Noor ; Knight, Martin M</creator><contributor>Secomb, Timothy W.</contributor><creatorcontrib>Wheeler, Andrew P S ; Morad, Samir ; Buchholz, Noor ; Knight, Martin M ; Secomb, Timothy W.</creatorcontrib><description>We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (± 2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0047133</identifier><identifier>PMID: 23091609</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Analysis ; Biology ; Biophysical Phenomena ; Biophysics ; Capillary flow ; Capillary waves ; Clinical trials ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Diagnostic software ; Diagnostic systems ; Engineering ; Engineering schools ; Flow velocity ; Fluid dynamics ; Fluid mechanics ; Fluids ; Humans ; Hydrodynamics ; Male ; Materials science ; Medicine ; Middle Aged ; Models, Theoretical ; Patients ; Physics ; Prostate ; Reynolds number ; Surface tension ; Urine ; Urodynamics ; Urology ; Young Adult</subject><ispartof>PloS one, 2012-10, Vol.7 (10), p.e47133-e47133</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Wheeler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Wheeler et al 2012 Wheeler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ca8f105c13402ce6e857d1210ee0d0d5175ae79333b5113b7a1585b21f88c66a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473049/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23091609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Secomb, Timothy W.</contributor><creatorcontrib>Wheeler, Andrew P S</creatorcontrib><creatorcontrib>Morad, Samir</creatorcontrib><creatorcontrib>Buchholz, Noor</creatorcontrib><creatorcontrib>Knight, Martin M</creatorcontrib><title>The shape of the urine stream--from biophysics to diagnostics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (± 2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Capillary flow</subject><subject>Capillary waves</subject><subject>Clinical trials</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Male</subject><subject>Materials science</subject><subject>Medicine</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Patients</subject><subject>Physics</subject><subject>Prostate</subject><subject>Reynolds number</subject><subject>Surface tension</subject><subject>Urine</subject><subject>Urodynamics</subject><subject>Urology</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguhFx5ymaZMLhWXxY2BhQVdvQ5qeTDO0zZi04v57M053mcpeSC6SnDznPTnJmyTPgayAVvBu6yY_qG61cwOuCCkqoPRBcgqC5lmZE_rwaH2SPAlhSwijvCwfJyc5JQJKIk6T99ctpqFVO0ydSce4mbwdYmj0qPosM971aW3drr0JVod0dGlj1WZwYYzbp8kjo7qAz-b5LPn-6eP1xZfs8urz-uL8MtMV42OmFTdAmAZakFxjiZxVDeRAEElDGgYVU1gJSmnNAGhdKWCc1TkYznVZKnqWvDzo7joX5Nx5kEDzkpWEFkUk1geicWord972yt9Ip6z8G3B-I5WPV-5QUkGNyasmR90Upag4AYWiqtEIzqEwUevDXG2qe2w0DqNX3UJ0eTLYVm7cL0mLipJCRIE3s4B3PycMo-xt0Nh1akA3xXsDFIKRkkFEX_2D3t_dTG1UbMAOxsW6ei8qzwvBc8Zz2Jdd3UPF0WBvdbSJsTG-SHi7SIjMiL_HjZpCkOtvX_-fvfqxZF8fsS2qbmyD66bRuiEsweIAau9C8GjuHhmI3Lv89jXk3uVydnlMe3H8QXdJt7amfwCjFvUP</recordid><startdate>20121016</startdate><enddate>20121016</enddate><creator>Wheeler, Andrew P S</creator><creator>Morad, Samir</creator><creator>Buchholz, Noor</creator><creator>Knight, Martin M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121016</creationdate><title>The shape of the urine stream--from biophysics to diagnostics</title><author>Wheeler, Andrew P S ; Morad, Samir ; Buchholz, Noor ; Knight, Martin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ca8f105c13402ce6e857d1210ee0d0d5175ae79333b5113b7a1585b21f88c66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Capillary flow</topic><topic>Capillary waves</topic><topic>Clinical trials</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Male</topic><topic>Materials science</topic><topic>Medicine</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Patients</topic><topic>Physics</topic><topic>Prostate</topic><topic>Reynolds number</topic><topic>Surface tension</topic><topic>Urine</topic><topic>Urodynamics</topic><topic>Urology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheeler, Andrew P S</creatorcontrib><creatorcontrib>Morad, Samir</creatorcontrib><creatorcontrib>Buchholz, Noor</creatorcontrib><creatorcontrib>Knight, Martin M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheeler, Andrew P S</au><au>Morad, Samir</au><au>Buchholz, Noor</au><au>Knight, Martin M</au><au>Secomb, Timothy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape of the urine stream--from biophysics to diagnostics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-10-16</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>e47133</spage><epage>e47133</epage><pages>e47133-e47133</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (± 2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23091609</pmid><doi>10.1371/journal.pone.0047133</doi><tpages>e47133</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-10, Vol.7 (10), p.e47133-e47133 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326560344 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adolescent Adult Aged Aged, 80 and over Algorithms Analysis Biology Biophysical Phenomena Biophysics Capillary flow Capillary waves Clinical trials Computational fluid dynamics Computer applications Computer Simulation Diagnostic software Diagnostic systems Engineering Engineering schools Flow velocity Fluid dynamics Fluid mechanics Fluids Humans Hydrodynamics Male Materials science Medicine Middle Aged Models, Theoretical Patients Physics Prostate Reynolds number Surface tension Urine Urodynamics Urology Young Adult |
title | The shape of the urine stream--from biophysics to diagnostics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape%20of%20the%20urine%20stream--from%20biophysics%20to%20diagnostics&rft.jtitle=PloS%20one&rft.au=Wheeler,%20Andrew%20P%20S&rft.date=2012-10-16&rft.volume=7&rft.issue=10&rft.spage=e47133&rft.epage=e47133&rft.pages=e47133-e47133&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0047133&rft_dat=%3Cgale_plos_%3EA498258219%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326560344&rft_id=info:pmid/23091609&rft_galeid=A498258219&rft_doaj_id=oai_doaj_org_article_393ff27d2ecd4697801ae97bef98814f&rfr_iscdi=true |