DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponential...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-09, Vol.7 (9), p.e40942-e40942 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e40942 |
---|---|
container_issue | 9 |
container_start_page | e40942 |
container_title | PloS one |
container_volume | 7 |
creator | Argilaguet, Jordi M Pérez-Martín, Eva Nofrarías, Miquel Gallardo, Carmina Accensi, Francesc Lacasta, Anna Mora, Mercedes Ballester, Maria Galindo-Cardiel, Ivan López-Soria, Sergio Escribano, José M Reche, Pedro A Rodríguez, Fernando |
description | The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease. |
doi_str_mv | 10.1371/journal.pone.0040942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1326551661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff9f0a0ee55543a6a8e7739ce0242728</doaj_id><sourcerecordid>1095829530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-142986a36762c40f815aa63408048cc892a6ae5c805d9e390c6c6f9f95a51683</originalsourceid><addsrcrecordid>eNptUk1vUzEQfEIgWgr_AIElLlwS_Pz17AtSVL4qVXDp3do4-xJHjh1sJ1X_PQ5JqxZxsa31zOzuaLrubU-nPR_6T-u0yxHCdJsiTikV1Aj2rDvvDWcTxSh__uh91r0qZU2p5Fqpl90Z41SYgenzLn_5OSN7cM5HqD5FsoVcPYRwR7Y5VXS1EFiCj6WS2Zi9g0jKrY9IRtxjJnufd4UErCsIxLUjYFwi8ZHUFRKYF4wOSRoJxOrnaeGxvO5ejBAKvjndF93Nt683lz8m17--X13OridOMlUnvWBGK-BqUMwJOupeAiguqKZCO6cNAwUonaZyYZAb6pRToxmNBNkrzS-690fZbUjFntwqtudMyQZQfUNcHRGLBGu7zX4D-c4m8PZvIeWlPZjhAtqxCVOgiFJKwVtjjcPAjUPKBGtGNq3Pp267-QYXDmPNEJ6IPv2JfmWXaW-5kFoL0wQ-ngRy-r3DUu3GF4chQMS0a3NTIzUzktMG_fAP9P_biSPK5VRKxvFhmJ7aQ4LuWfaQIHtKUKO9e7zIA-k-MvwPhUnEug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326551661</pqid></control><display><type>article</type><title>DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Argilaguet, Jordi M ; Pérez-Martín, Eva ; Nofrarías, Miquel ; Gallardo, Carmina ; Accensi, Francesc ; Lacasta, Anna ; Mora, Mercedes ; Ballester, Maria ; Galindo-Cardiel, Ivan ; López-Soria, Sergio ; Escribano, José M ; Reche, Pedro A ; Rodríguez, Fernando</creator><creatorcontrib>Argilaguet, Jordi M ; Pérez-Martín, Eva ; Nofrarías, Miquel ; Gallardo, Carmina ; Accensi, Francesc ; Lacasta, Anna ; Mora, Mercedes ; Ballester, Maria ; Galindo-Cardiel, Ivan ; López-Soria, Sergio ; Escribano, José M ; Reche, Pedro A ; Rodríguez, Fernando</creatorcontrib><description>The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040942</identifier><identifier>PMID: 23049728</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>African swine fever ; African Swine Fever - immunology ; African Swine Fever - mortality ; African Swine Fever - prevention & control ; African Swine Fever - virology ; African Swine Fever Virus - immunology ; Animals ; Antibodies ; Antibodies, Viral - immunology ; Antigen presentation ; Antigens ; Antigens, Viral - genetics ; Antigens, Viral - immunology ; Asfarviridae ; Biology ; CD8 antigen ; Cells, Cultured ; Cellular structure ; Cytotoxicity ; Deoxyribonucleic acid ; Disease ; DNA ; DNA vaccines ; DNA, Viral - genetics ; DNA, Viral - immunology ; Experiments ; Fever ; Hemagglutinins ; Hogs ; Immunization ; Immunoglobulins ; Interferon-gamma - immunology ; Interferon-gamma - secretion ; Livestock ; Lymphocytes T ; Medicine ; Peptides ; Plasmids ; Plasmids - genetics ; Plasmids - immunology ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - immunology ; Survival Rate ; Swine ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; Ubiquitin ; Ubiquitin - genetics ; Ubiquitin - immunology ; Vaccination ; Vaccines ; Vaccines, DNA - administration & dosage ; Vaccines, DNA - genetics ; Vaccines, DNA - immunology ; Vaccines, Synthetic ; Veterinary Science ; Viral Proteins - genetics ; Viral Proteins - immunology ; Viral Vaccines - administration & dosage ; Viral Vaccines - genetics ; Viral Vaccines - immunology ; Viremia ; Viruses ; γ-Interferon</subject><ispartof>PloS one, 2012-09, Vol.7 (9), p.e40942-e40942</ispartof><rights>Argilaguet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Argilaguet et al 2012 Argilaguet et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-142986a36762c40f815aa63408048cc892a6ae5c805d9e390c6c6f9f95a51683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23049728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Argilaguet, Jordi M</creatorcontrib><creatorcontrib>Pérez-Martín, Eva</creatorcontrib><creatorcontrib>Nofrarías, Miquel</creatorcontrib><creatorcontrib>Gallardo, Carmina</creatorcontrib><creatorcontrib>Accensi, Francesc</creatorcontrib><creatorcontrib>Lacasta, Anna</creatorcontrib><creatorcontrib>Mora, Mercedes</creatorcontrib><creatorcontrib>Ballester, Maria</creatorcontrib><creatorcontrib>Galindo-Cardiel, Ivan</creatorcontrib><creatorcontrib>López-Soria, Sergio</creatorcontrib><creatorcontrib>Escribano, José M</creatorcontrib><creatorcontrib>Reche, Pedro A</creatorcontrib><creatorcontrib>Rodríguez, Fernando</creatorcontrib><title>DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.</description><subject>African swine fever</subject><subject>African Swine Fever - immunology</subject><subject>African Swine Fever - mortality</subject><subject>African Swine Fever - prevention & control</subject><subject>African Swine Fever - virology</subject><subject>African Swine Fever Virus - immunology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Viral - immunology</subject><subject>Antigen presentation</subject><subject>Antigens</subject><subject>Antigens, Viral - genetics</subject><subject>Antigens, Viral - immunology</subject><subject>Asfarviridae</subject><subject>Biology</subject><subject>CD8 antigen</subject><subject>Cells, Cultured</subject><subject>Cellular structure</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>DNA vaccines</subject><subject>DNA, Viral - genetics</subject><subject>DNA, Viral - immunology</subject><subject>Experiments</subject><subject>Fever</subject><subject>Hemagglutinins</subject><subject>Hogs</subject><subject>Immunization</subject><subject>Immunoglobulins</subject><subject>Interferon-gamma - immunology</subject><subject>Interferon-gamma - secretion</subject><subject>Livestock</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Peptides</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - immunology</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Survival Rate</subject><subject>Swine</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>Ubiquitin</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - immunology</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Vaccines, DNA - administration & dosage</subject><subject>Vaccines, DNA - genetics</subject><subject>Vaccines, DNA - immunology</subject><subject>Vaccines, Synthetic</subject><subject>Veterinary Science</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - immunology</subject><subject>Viral Vaccines - administration & dosage</subject><subject>Viral Vaccines - genetics</subject><subject>Viral Vaccines - immunology</subject><subject>Viremia</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vUzEQfEIgWgr_AIElLlwS_Pz17AtSVL4qVXDp3do4-xJHjh1sJ1X_PQ5JqxZxsa31zOzuaLrubU-nPR_6T-u0yxHCdJsiTikV1Aj2rDvvDWcTxSh__uh91r0qZU2p5Fqpl90Z41SYgenzLn_5OSN7cM5HqD5FsoVcPYRwR7Y5VXS1EFiCj6WS2Zi9g0jKrY9IRtxjJnufd4UErCsIxLUjYFwi8ZHUFRKYF4wOSRoJxOrnaeGxvO5ejBAKvjndF93Nt683lz8m17--X13OridOMlUnvWBGK-BqUMwJOupeAiguqKZCO6cNAwUonaZyYZAb6pRToxmNBNkrzS-690fZbUjFntwqtudMyQZQfUNcHRGLBGu7zX4D-c4m8PZvIeWlPZjhAtqxCVOgiFJKwVtjjcPAjUPKBGtGNq3Pp267-QYXDmPNEJ6IPv2JfmWXaW-5kFoL0wQ-ngRy-r3DUu3GF4chQMS0a3NTIzUzktMG_fAP9P_biSPK5VRKxvFhmJ7aQ4LuWfaQIHtKUKO9e7zIA-k-MvwPhUnEug</recordid><startdate>20120926</startdate><enddate>20120926</enddate><creator>Argilaguet, Jordi M</creator><creator>Pérez-Martín, Eva</creator><creator>Nofrarías, Miquel</creator><creator>Gallardo, Carmina</creator><creator>Accensi, Francesc</creator><creator>Lacasta, Anna</creator><creator>Mora, Mercedes</creator><creator>Ballester, Maria</creator><creator>Galindo-Cardiel, Ivan</creator><creator>López-Soria, Sergio</creator><creator>Escribano, José M</creator><creator>Reche, Pedro A</creator><creator>Rodríguez, Fernando</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120926</creationdate><title>DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies</title><author>Argilaguet, Jordi M ; Pérez-Martín, Eva ; Nofrarías, Miquel ; Gallardo, Carmina ; Accensi, Francesc ; Lacasta, Anna ; Mora, Mercedes ; Ballester, Maria ; Galindo-Cardiel, Ivan ; López-Soria, Sergio ; Escribano, José M ; Reche, Pedro A ; Rodríguez, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-142986a36762c40f815aa63408048cc892a6ae5c805d9e390c6c6f9f95a51683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>African swine fever</topic><topic>African Swine Fever - immunology</topic><topic>African Swine Fever - mortality</topic><topic>African Swine Fever - prevention & control</topic><topic>African Swine Fever - virology</topic><topic>African Swine Fever Virus - immunology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Viral - immunology</topic><topic>Antigen presentation</topic><topic>Antigens</topic><topic>Antigens, Viral - genetics</topic><topic>Antigens, Viral - immunology</topic><topic>Asfarviridae</topic><topic>Biology</topic><topic>CD8 antigen</topic><topic>Cells, Cultured</topic><topic>Cellular structure</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>DNA vaccines</topic><topic>DNA, Viral - genetics</topic><topic>DNA, Viral - immunology</topic><topic>Experiments</topic><topic>Fever</topic><topic>Hemagglutinins</topic><topic>Hogs</topic><topic>Immunization</topic><topic>Immunoglobulins</topic><topic>Interferon-gamma - immunology</topic><topic>Interferon-gamma - secretion</topic><topic>Livestock</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Peptides</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - immunology</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Survival Rate</topic><topic>Swine</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>Ubiquitin</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - immunology</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Vaccines, DNA - administration & dosage</topic><topic>Vaccines, DNA - genetics</topic><topic>Vaccines, DNA - immunology</topic><topic>Vaccines, Synthetic</topic><topic>Veterinary Science</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - immunology</topic><topic>Viral Vaccines - administration & dosage</topic><topic>Viral Vaccines - genetics</topic><topic>Viral Vaccines - immunology</topic><topic>Viremia</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argilaguet, Jordi M</creatorcontrib><creatorcontrib>Pérez-Martín, Eva</creatorcontrib><creatorcontrib>Nofrarías, Miquel</creatorcontrib><creatorcontrib>Gallardo, Carmina</creatorcontrib><creatorcontrib>Accensi, Francesc</creatorcontrib><creatorcontrib>Lacasta, Anna</creatorcontrib><creatorcontrib>Mora, Mercedes</creatorcontrib><creatorcontrib>Ballester, Maria</creatorcontrib><creatorcontrib>Galindo-Cardiel, Ivan</creatorcontrib><creatorcontrib>López-Soria, Sergio</creatorcontrib><creatorcontrib>Escribano, José M</creatorcontrib><creatorcontrib>Reche, Pedro A</creatorcontrib><creatorcontrib>Rodríguez, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argilaguet, Jordi M</au><au>Pérez-Martín, Eva</au><au>Nofrarías, Miquel</au><au>Gallardo, Carmina</au><au>Accensi, Francesc</au><au>Lacasta, Anna</au><au>Mora, Mercedes</au><au>Ballester, Maria</au><au>Galindo-Cardiel, Ivan</au><au>López-Soria, Sergio</au><au>Escribano, José M</au><au>Reche, Pedro A</au><au>Rodríguez, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-09-26</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>e40942</spage><epage>e40942</epage><pages>e40942-e40942</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23049728</pmid><doi>10.1371/journal.pone.0040942</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-09, Vol.7 (9), p.e40942-e40942 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326551661 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | African swine fever African Swine Fever - immunology African Swine Fever - mortality African Swine Fever - prevention & control African Swine Fever - virology African Swine Fever Virus - immunology Animals Antibodies Antibodies, Viral - immunology Antigen presentation Antigens Antigens, Viral - genetics Antigens, Viral - immunology Asfarviridae Biology CD8 antigen Cells, Cultured Cellular structure Cytotoxicity Deoxyribonucleic acid Disease DNA DNA vaccines DNA, Viral - genetics DNA, Viral - immunology Experiments Fever Hemagglutinins Hogs Immunization Immunoglobulins Interferon-gamma - immunology Interferon-gamma - secretion Livestock Lymphocytes T Medicine Peptides Plasmids Plasmids - genetics Plasmids - immunology Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - immunology Survival Rate Swine T-Lymphocytes, Cytotoxic - drug effects T-Lymphocytes, Cytotoxic - immunology Ubiquitin Ubiquitin - genetics Ubiquitin - immunology Vaccination Vaccines Vaccines, DNA - administration & dosage Vaccines, DNA - genetics Vaccines, DNA - immunology Vaccines, Synthetic Veterinary Science Viral Proteins - genetics Viral Proteins - immunology Viral Vaccines - administration & dosage Viral Vaccines - genetics Viral Vaccines - immunology Viremia Viruses γ-Interferon |
title | DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20vaccination%20partially%20protects%20against%20African%20swine%20fever%20virus%20lethal%20challenge%20in%20the%20absence%20of%20antibodies&rft.jtitle=PloS%20one&rft.au=Argilaguet,%20Jordi%20M&rft.date=2012-09-26&rft.volume=7&rft.issue=9&rft.spage=e40942&rft.epage=e40942&rft.pages=e40942-e40942&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040942&rft_dat=%3Cproquest_plos_%3E1095829530%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326551661&rft_id=info:pmid/23049728&rft_doaj_id=oai_doaj_org_article_ff9f0a0ee55543a6a8e7739ce0242728&rfr_iscdi=true |