Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling

TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-10, Vol.7 (10), p.e45870-e45870
Hauptverfasser: Oh, Chang Joo, Kim, Joon-Young, Choi, Young-Keun, Kim, Han-Jong, Jeong, Ji-Yun, Bae, Kwi-Hyun, Park, Keun-Gyu, Lee, In-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethylfumarate (DMF), which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-β signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2) decreased PAI-1, alpha-smooth muscle actin (α-SMA), fibronectin and type 1 collagen expression in TGF-β-treated rat mesangial cells (RMCs) and renal fibroblast cells (NRK-49F). Additionally, DMF and Ad-Nrf2 repressed TGF-β-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE)-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST) did not reverse the inhibitory effect of DMF on TGF-β-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO)-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-β/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0045870