A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain

Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-09, Vol.7 (9), p.e43608
Hauptverfasser: Kriszt, Rókus, Krifaton, Csilla, Szoboszlay, Sándor, Cserháti, Mátyás, Kriszt, Balázs, Kukolya, József, Czéh, Arpád, Fehér-Tóth, Szilvia, Török, Lívia, Szőke, Zsuzsanna, Kovács, Krisztina J, Barna, Teréz, Ferenczi, Szilamér
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e43608
container_title PloS one
container_volume 7
creator Kriszt, Rókus
Krifaton, Csilla
Szoboszlay, Sándor
Cserháti, Mátyás
Kriszt, Balázs
Kukolya, József
Czéh, Arpád
Fehér-Tóth, Szilvia
Török, Lívia
Szőke, Zsuzsanna
Kovács, Krisztina J
Barna, Teréz
Ferenczi, Szilamér
description Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.
doi_str_mv 10.1371/journal.pone.0043608
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326551047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498251823</galeid><doaj_id>oai_doaj_org_article_758590ace6e04b828a25b384dc46f773</doaj_id><sourcerecordid>A498251823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d85f0546bc4501c27d2de5d5f72ee8f3de5495fe5ca070bd912a53f7f1bb1593</originalsourceid><addsrcrecordid>eNqNku9r1DAcxosobk7_A9GCMPDFnfnZpm-EY0w9HAzm8G1Ik297OXrJmbTT8683t-vGFRSkL9Kkn-dJ-uTJstcYzTEt8Ye1H4JT3XzrHcwRYrRA4kl2iitKZgVB9OnR-0n2IsY1QpyKonienRCKWFXS6jSDRe7gZ_4bVFAduOSV19YbaIMyqrfe5bEPqod2lw_RujZPyGyr-pVvwVmd36y88dprPcR8uwvWWGfvfFAu5l8ZEvdq615mzxrVRXg1jmfZ7afL24svs6vrz8uLxdVMFxXpZ0bwBnFW1JpxhDUpDTHADW9KAiAamias4g1wrVCJalNhojhtygbXNeYVPcveHmy3nY9yDChKTEnBOUasTMTyQBiv1nIb7EaFnfTKyvsFH1qpQm91B7LkgldIaSgAsVoQoQivqWBGs6IpS5q8Po67DfUGjAaX_rWbmE6_OLuSrb-TlHGR8k8G70aD4H8MEPt_HHmk2nRB0rrGJzO9sVHLBasE4ViQ_WHmf6HSY2BjdbrWxqb1ieD9RJCYHn71rRpilMtvN__PXn-fsudH7ApU16-i74Z9l-IUZAdQBx9jgOYxOYzkvuEPach9w-XY8CR7c5z6o-ih0vQPtA_3aA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326551047</pqid></control><display><type>article</type><title>A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kriszt, Rókus ; Krifaton, Csilla ; Szoboszlay, Sándor ; Cserháti, Mátyás ; Kriszt, Balázs ; Kukolya, József ; Czéh, Arpád ; Fehér-Tóth, Szilvia ; Török, Lívia ; Szőke, Zsuzsanna ; Kovács, Krisztina J ; Barna, Teréz ; Ferenczi, Szilamér</creator><contributor>Lobaccaro, Jean-Marc A.</contributor><creatorcontrib>Kriszt, Rókus ; Krifaton, Csilla ; Szoboszlay, Sándor ; Cserháti, Mátyás ; Kriszt, Balázs ; Kukolya, József ; Czéh, Arpád ; Fehér-Tóth, Szilvia ; Török, Lívia ; Szőke, Zsuzsanna ; Kovács, Krisztina J ; Barna, Teréz ; Ferenczi, Szilamér ; Lobaccaro, Jean-Marc A.</creatorcontrib><description>Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0043608</identifier><identifier>PMID: 23049739</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>17β-Estradiol ; Actinomycetales ; Adult ; Agricultural pollution ; Agriculture ; Animals ; Apelin ; Aquaporin 5 ; Aquaporin 5 - genetics ; Aquaporin 5 - metabolism ; Bacteria ; Biodegradability ; Biodegradation ; Biodegradation, Environmental ; Biological effects ; Biology ; Biophysics ; Biotransformation ; Body weight ; Calbindin ; Calbindins ; Chemical analysis ; Complement C2 - genetics ; Complement C2 - metabolism ; Detoxification ; Drug dosages ; Endocrine disruptors ; Environmental Pollutants - metabolism ; Environmental Pollutants - pharmacology ; Environmental protection ; Estradiol - pharmacology ; Estrogens ; Estrogens, Non-Steroidal - metabolism ; Estrogens, Non-Steroidal - pharmacology ; Experiments ; Feeding ; Female ; Females ; Food ; Food safety ; Fuel consumption ; Fusarium ; Gene expression ; Gene Expression - drug effects ; Genes ; High-performance liquid chromatography ; Humans ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Laboratories ; Liquid chromatography ; Medicine ; Metabolism ; Metabolites ; Methods ; mRNA ; Mycotoxins ; Oils &amp; fats ; Olive oil ; Organ Size - drug effects ; Properties ; Rats ; Raw materials ; Reproductive disorders ; Rhodococcus ; Rhodococcus - chemistry ; Rhodococcus - metabolism ; S100 Calcium Binding Protein G - genetics ; S100 Calcium Binding Protein G - metabolism ; Sex hormones ; Toxins ; Uterus ; Uterus - drug effects ; Uterus - physiology ; Xenoestrogens ; Yeast ; Zearalenone ; Zearalenone - metabolism ; Zearalenone - pharmacology</subject><ispartof>PloS one, 2012-09, Vol.7 (9), p.e43608</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Kriszt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Kriszt et al 2012 Kriszt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d85f0546bc4501c27d2de5d5f72ee8f3de5495fe5ca070bd912a53f7f1bb1593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458049/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23049739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lobaccaro, Jean-Marc A.</contributor><creatorcontrib>Kriszt, Rókus</creatorcontrib><creatorcontrib>Krifaton, Csilla</creatorcontrib><creatorcontrib>Szoboszlay, Sándor</creatorcontrib><creatorcontrib>Cserháti, Mátyás</creatorcontrib><creatorcontrib>Kriszt, Balázs</creatorcontrib><creatorcontrib>Kukolya, József</creatorcontrib><creatorcontrib>Czéh, Arpád</creatorcontrib><creatorcontrib>Fehér-Tóth, Szilvia</creatorcontrib><creatorcontrib>Török, Lívia</creatorcontrib><creatorcontrib>Szőke, Zsuzsanna</creatorcontrib><creatorcontrib>Kovács, Krisztina J</creatorcontrib><creatorcontrib>Barna, Teréz</creatorcontrib><creatorcontrib>Ferenczi, Szilamér</creatorcontrib><title>A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.</description><subject>17β-Estradiol</subject><subject>Actinomycetales</subject><subject>Adult</subject><subject>Agricultural pollution</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Apelin</subject><subject>Aquaporin 5</subject><subject>Aquaporin 5 - genetics</subject><subject>Aquaporin 5 - metabolism</subject><subject>Bacteria</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Biotransformation</subject><subject>Body weight</subject><subject>Calbindin</subject><subject>Calbindins</subject><subject>Chemical analysis</subject><subject>Complement C2 - genetics</subject><subject>Complement C2 - metabolism</subject><subject>Detoxification</subject><subject>Drug dosages</subject><subject>Endocrine disruptors</subject><subject>Environmental Pollutants - metabolism</subject><subject>Environmental Pollutants - pharmacology</subject><subject>Environmental protection</subject><subject>Estradiol - pharmacology</subject><subject>Estrogens</subject><subject>Estrogens, Non-Steroidal - metabolism</subject><subject>Estrogens, Non-Steroidal - pharmacology</subject><subject>Experiments</subject><subject>Feeding</subject><subject>Female</subject><subject>Females</subject><subject>Food</subject><subject>Food safety</subject><subject>Fuel consumption</subject><subject>Fusarium</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>High-performance liquid chromatography</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Laboratories</subject><subject>Liquid chromatography</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>mRNA</subject><subject>Mycotoxins</subject><subject>Oils &amp; fats</subject><subject>Olive oil</subject><subject>Organ Size - drug effects</subject><subject>Properties</subject><subject>Rats</subject><subject>Raw materials</subject><subject>Reproductive disorders</subject><subject>Rhodococcus</subject><subject>Rhodococcus - chemistry</subject><subject>Rhodococcus - metabolism</subject><subject>S100 Calcium Binding Protein G - genetics</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Sex hormones</subject><subject>Toxins</subject><subject>Uterus</subject><subject>Uterus - drug effects</subject><subject>Uterus - physiology</subject><subject>Xenoestrogens</subject><subject>Yeast</subject><subject>Zearalenone</subject><subject>Zearalenone - metabolism</subject><subject>Zearalenone - pharmacology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNku9r1DAcxosobk7_A9GCMPDFnfnZpm-EY0w9HAzm8G1Ik297OXrJmbTT8683t-vGFRSkL9Kkn-dJ-uTJstcYzTEt8Ye1H4JT3XzrHcwRYrRA4kl2iitKZgVB9OnR-0n2IsY1QpyKonienRCKWFXS6jSDRe7gZ_4bVFAduOSV19YbaIMyqrfe5bEPqod2lw_RujZPyGyr-pVvwVmd36y88dprPcR8uwvWWGfvfFAu5l8ZEvdq615mzxrVRXg1jmfZ7afL24svs6vrz8uLxdVMFxXpZ0bwBnFW1JpxhDUpDTHADW9KAiAamias4g1wrVCJalNhojhtygbXNeYVPcveHmy3nY9yDChKTEnBOUasTMTyQBiv1nIb7EaFnfTKyvsFH1qpQm91B7LkgldIaSgAsVoQoQivqWBGs6IpS5q8Po67DfUGjAaX_rWbmE6_OLuSrb-TlHGR8k8G70aD4H8MEPt_HHmk2nRB0rrGJzO9sVHLBasE4ViQ_WHmf6HSY2BjdbrWxqb1ieD9RJCYHn71rRpilMtvN__PXn-fsudH7ApU16-i74Z9l-IUZAdQBx9jgOYxOYzkvuEPach9w-XY8CR7c5z6o-ih0vQPtA_3aA</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Kriszt, Rókus</creator><creator>Krifaton, Csilla</creator><creator>Szoboszlay, Sándor</creator><creator>Cserháti, Mátyás</creator><creator>Kriszt, Balázs</creator><creator>Kukolya, József</creator><creator>Czéh, Arpád</creator><creator>Fehér-Tóth, Szilvia</creator><creator>Török, Lívia</creator><creator>Szőke, Zsuzsanna</creator><creator>Kovács, Krisztina J</creator><creator>Barna, Teréz</creator><creator>Ferenczi, Szilamér</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120925</creationdate><title>A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain</title><author>Kriszt, Rókus ; Krifaton, Csilla ; Szoboszlay, Sándor ; Cserháti, Mátyás ; Kriszt, Balázs ; Kukolya, József ; Czéh, Arpád ; Fehér-Tóth, Szilvia ; Török, Lívia ; Szőke, Zsuzsanna ; Kovács, Krisztina J ; Barna, Teréz ; Ferenczi, Szilamér</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d85f0546bc4501c27d2de5d5f72ee8f3de5495fe5ca070bd912a53f7f1bb1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>17β-Estradiol</topic><topic>Actinomycetales</topic><topic>Adult</topic><topic>Agricultural pollution</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Apelin</topic><topic>Aquaporin 5</topic><topic>Aquaporin 5 - genetics</topic><topic>Aquaporin 5 - metabolism</topic><topic>Bacteria</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Biotransformation</topic><topic>Body weight</topic><topic>Calbindin</topic><topic>Calbindins</topic><topic>Chemical analysis</topic><topic>Complement C2 - genetics</topic><topic>Complement C2 - metabolism</topic><topic>Detoxification</topic><topic>Drug dosages</topic><topic>Endocrine disruptors</topic><topic>Environmental Pollutants - metabolism</topic><topic>Environmental Pollutants - pharmacology</topic><topic>Environmental protection</topic><topic>Estradiol - pharmacology</topic><topic>Estrogens</topic><topic>Estrogens, Non-Steroidal - metabolism</topic><topic>Estrogens, Non-Steroidal - pharmacology</topic><topic>Experiments</topic><topic>Feeding</topic><topic>Female</topic><topic>Females</topic><topic>Food</topic><topic>Food safety</topic><topic>Fuel consumption</topic><topic>Fusarium</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>High-performance liquid chromatography</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Laboratories</topic><topic>Liquid chromatography</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>mRNA</topic><topic>Mycotoxins</topic><topic>Oils &amp; fats</topic><topic>Olive oil</topic><topic>Organ Size - drug effects</topic><topic>Properties</topic><topic>Rats</topic><topic>Raw materials</topic><topic>Reproductive disorders</topic><topic>Rhodococcus</topic><topic>Rhodococcus - chemistry</topic><topic>Rhodococcus - metabolism</topic><topic>S100 Calcium Binding Protein G - genetics</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Sex hormones</topic><topic>Toxins</topic><topic>Uterus</topic><topic>Uterus - drug effects</topic><topic>Uterus - physiology</topic><topic>Xenoestrogens</topic><topic>Yeast</topic><topic>Zearalenone</topic><topic>Zearalenone - metabolism</topic><topic>Zearalenone - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kriszt, Rókus</creatorcontrib><creatorcontrib>Krifaton, Csilla</creatorcontrib><creatorcontrib>Szoboszlay, Sándor</creatorcontrib><creatorcontrib>Cserháti, Mátyás</creatorcontrib><creatorcontrib>Kriszt, Balázs</creatorcontrib><creatorcontrib>Kukolya, József</creatorcontrib><creatorcontrib>Czéh, Arpád</creatorcontrib><creatorcontrib>Fehér-Tóth, Szilvia</creatorcontrib><creatorcontrib>Török, Lívia</creatorcontrib><creatorcontrib>Szőke, Zsuzsanna</creatorcontrib><creatorcontrib>Kovács, Krisztina J</creatorcontrib><creatorcontrib>Barna, Teréz</creatorcontrib><creatorcontrib>Ferenczi, Szilamér</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kriszt, Rókus</au><au>Krifaton, Csilla</au><au>Szoboszlay, Sándor</au><au>Cserháti, Mátyás</au><au>Kriszt, Balázs</au><au>Kukolya, József</au><au>Czéh, Arpád</au><au>Fehér-Tóth, Szilvia</au><au>Török, Lívia</au><au>Szőke, Zsuzsanna</au><au>Kovács, Krisztina J</au><au>Barna, Teréz</au><au>Ferenczi, Szilamér</au><au>Lobaccaro, Jean-Marc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-09-25</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>e43608</spage><pages>e43608-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23049739</pmid><doi>10.1371/journal.pone.0043608</doi><tpages>e43608</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-09, Vol.7 (9), p.e43608
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326551047
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 17β-Estradiol
Actinomycetales
Adult
Agricultural pollution
Agriculture
Animals
Apelin
Aquaporin 5
Aquaporin 5 - genetics
Aquaporin 5 - metabolism
Bacteria
Biodegradability
Biodegradation
Biodegradation, Environmental
Biological effects
Biology
Biophysics
Biotransformation
Body weight
Calbindin
Calbindins
Chemical analysis
Complement C2 - genetics
Complement C2 - metabolism
Detoxification
Drug dosages
Endocrine disruptors
Environmental Pollutants - metabolism
Environmental Pollutants - pharmacology
Environmental protection
Estradiol - pharmacology
Estrogens
Estrogens, Non-Steroidal - metabolism
Estrogens, Non-Steroidal - pharmacology
Experiments
Feeding
Female
Females
Food
Food safety
Fuel consumption
Fusarium
Gene expression
Gene Expression - drug effects
Genes
High-performance liquid chromatography
Humans
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
Laboratories
Liquid chromatography
Medicine
Metabolism
Metabolites
Methods
mRNA
Mycotoxins
Oils & fats
Olive oil
Organ Size - drug effects
Properties
Rats
Raw materials
Reproductive disorders
Rhodococcus
Rhodococcus - chemistry
Rhodococcus - metabolism
S100 Calcium Binding Protein G - genetics
S100 Calcium Binding Protein G - metabolism
Sex hormones
Toxins
Uterus
Uterus - drug effects
Uterus - physiology
Xenoestrogens
Yeast
Zearalenone
Zearalenone - metabolism
Zearalenone - pharmacology
title A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20zearalenone%20biodegradation%20strategy%20using%20non-pathogenic%20Rhodococcus%20pyridinivorans%20K408%20strain&rft.jtitle=PloS%20one&rft.au=Kriszt,%20R%C3%B3kus&rft.date=2012-09-25&rft.volume=7&rft.issue=9&rft.spage=e43608&rft.pages=e43608-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0043608&rft_dat=%3Cgale_plos_%3EA498251823%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326551047&rft_id=info:pmid/23049739&rft_galeid=A498251823&rft_doaj_id=oai_doaj_org_article_758590ace6e04b828a25b384dc46f773&rfr_iscdi=true