PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow

Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-09, Vol.7 (9), p.e41555
Hauptverfasser: Sharma, Shruti, Sun, Xutong, Rafikov, Ruslan, Kumar, Sanjiv, Hou, Yali, Oishi, Peter E, Datar, Sanjeev A, Raff, Gary, Fineman, Jeffrey R, Black, Stephen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e41555
container_title PloS one
container_volume 7
creator Sharma, Shruti
Sun, Xutong
Rafikov, Ruslan
Kumar, Sanjiv
Hou, Yali
Oishi, Peter E
Datar, Sanjeev A
Raff, Gary
Fineman, Jeffrey R
Black, Stephen M
description Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.
doi_str_mv 10.1371/journal.pone.0041555
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1326544975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a79e930a075b47b2a8661612db632d90</doaj_id><sourcerecordid>2943642701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a014edec34618789aacd2e09d01489fedad7aed6fcb12e34c6a22d8bd59997563</originalsourceid><addsrcrecordid>eNp1Uttu1DAUjBCIlsIfILDEcxbf4sQvSFXFpVIlKgTP1ol9suuVYy92AuK7-A--iZRNq_aBJ1tzZuaMjqaqXjK6YaJlb_dpzhHC5pAibiiVrGmaR9Up04LXilPx-N7_pHpWyp7SRnRKPa1OONeKN213Wk3X1-df6j-_ScbtHGDCQizk6CcfkezSiKlMUHwhEB0Z_ZTsLkWXPQQyzNFOPkXiIwESYOzJmBwGkoYFshmhoCOHOYwpQv5F-pCSI0NIP59XTwYIBV-s71n17cP7rxef6qvPHy8vzq9q23A11UCZRIdWSMW6ttMA1nGk2i14pwd04FpApwbbM45CWgWcu653jda6bZQ4q14ffQ8hFbMerBgmuGqkXCgL4_LIcAn25pD9uCQ1Cbz5B6S8NZAnbwMaaDVqQYG2TS_bnsNySqYYd70S3Gm6eL1bt839iM5inDKEB6YPJ9HvzDb9MEIKIVu5GLxZDXL6PmOZ_hNZHlk2p1IyDncbGDU3zbhVmZtmmLUZi-zV_XR3otsqiL9KiLot</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326544975</pqid></control><display><type>article</type><title>PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharma, Shruti ; Sun, Xutong ; Rafikov, Ruslan ; Kumar, Sanjiv ; Hou, Yali ; Oishi, Peter E ; Datar, Sanjeev A ; Raff, Gary ; Fineman, Jeffrey R ; Black, Stephen M</creator><creatorcontrib>Sharma, Shruti ; Sun, Xutong ; Rafikov, Ruslan ; Kumar, Sanjiv ; Hou, Yali ; Oishi, Peter E ; Datar, Sanjeev A ; Raff, Gary ; Fineman, Jeffrey R ; Black, Stephen M</creatorcontrib><description>Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0041555</identifier><identifier>PMID: 22962578</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetyltransferase ; Animals ; Animals, Newborn ; ATP ; Biology ; Blood ; Blood flow ; Carnitine ; Carnitine - metabolism ; Carnitine O-Acetyltransferase - genetics ; Carnitine O-Acetyltransferase - metabolism ; Carnitine O-Palmitoyltransferase - genetics ; Carnitine O-Palmitoyltransferase - metabolism ; Children ; Diabetes ; Gene expression ; Gene Expression Regulation - drug effects ; Health sciences ; Homeostasis ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Hsp90 protein ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Lung - drug effects ; Lung - metabolism ; Lung - pathology ; Lung - surgery ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Models, Animal ; Nitric oxide ; Nitric Oxide - metabolism ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; Oxidative Stress - drug effects ; Pediatrics ; Peroxisome proliferator-activated receptors ; Phosphorylation ; PPAR gamma - antagonists &amp; inhibitors ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Proteins ; Pulmonary Artery - drug effects ; Pulmonary Artery - metabolism ; Pulmonary Artery - pathology ; Pulmonary Artery - surgery ; Pulmonary Circulation - drug effects ; Pulmonary hypertension ; Reduction ; Regulatory proteins ; Rodents ; Rosiglitazone ; Shear stress ; Sheep, Domestic ; Signal Transduction - drug effects ; Signaling ; siRNA ; Superoxides - metabolism ; Thiazolidinediones - pharmacology ; Vasodilator Agents - pharmacology</subject><ispartof>PloS one, 2012-09, Vol.7 (9), p.e41555</ispartof><rights>Sharma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Sharma et al 2012 Sharma et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a014edec34618789aacd2e09d01489fedad7aed6fcb12e34c6a22d8bd59997563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22962578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Shruti</creatorcontrib><creatorcontrib>Sun, Xutong</creatorcontrib><creatorcontrib>Rafikov, Ruslan</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Hou, Yali</creatorcontrib><creatorcontrib>Oishi, Peter E</creatorcontrib><creatorcontrib>Datar, Sanjeev A</creatorcontrib><creatorcontrib>Raff, Gary</creatorcontrib><creatorcontrib>Fineman, Jeffrey R</creatorcontrib><creatorcontrib>Black, Stephen M</creatorcontrib><title>PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.</description><subject>Acetyltransferase</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>ATP</subject><subject>Biology</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Carnitine</subject><subject>Carnitine - metabolism</subject><subject>Carnitine O-Acetyltransferase - genetics</subject><subject>Carnitine O-Acetyltransferase - metabolism</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Carnitine O-Palmitoyltransferase - metabolism</subject><subject>Children</subject><subject>Diabetes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Health sciences</subject><subject>Homeostasis</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Hsp90 protein</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung - surgery</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Models, Animal</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Pediatrics</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phosphorylation</subject><subject>PPAR gamma - antagonists &amp; inhibitors</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Proteins</subject><subject>Pulmonary Artery - drug effects</subject><subject>Pulmonary Artery - metabolism</subject><subject>Pulmonary Artery - pathology</subject><subject>Pulmonary Artery - surgery</subject><subject>Pulmonary Circulation - drug effects</subject><subject>Pulmonary hypertension</subject><subject>Reduction</subject><subject>Regulatory proteins</subject><subject>Rodents</subject><subject>Rosiglitazone</subject><subject>Shear stress</subject><subject>Sheep, Domestic</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Superoxides - metabolism</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Vasodilator Agents - pharmacology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uttu1DAUjBCIlsIfILDEcxbf4sQvSFXFpVIlKgTP1ol9suuVYy92AuK7-A--iZRNq_aBJ1tzZuaMjqaqXjK6YaJlb_dpzhHC5pAibiiVrGmaR9Up04LXilPx-N7_pHpWyp7SRnRKPa1OONeKN213Wk3X1-df6j-_ScbtHGDCQizk6CcfkezSiKlMUHwhEB0Z_ZTsLkWXPQQyzNFOPkXiIwESYOzJmBwGkoYFshmhoCOHOYwpQv5F-pCSI0NIP59XTwYIBV-s71n17cP7rxef6qvPHy8vzq9q23A11UCZRIdWSMW6ttMA1nGk2i14pwd04FpApwbbM45CWgWcu653jda6bZQ4q14ffQ8hFbMerBgmuGqkXCgL4_LIcAn25pD9uCQ1Cbz5B6S8NZAnbwMaaDVqQYG2TS_bnsNySqYYd70S3Gm6eL1bt839iM5inDKEB6YPJ9HvzDb9MEIKIVu5GLxZDXL6PmOZ_hNZHlk2p1IyDncbGDU3zbhVmZtmmLUZi-zV_XR3otsqiL9KiLot</recordid><startdate>20120904</startdate><enddate>20120904</enddate><creator>Sharma, Shruti</creator><creator>Sun, Xutong</creator><creator>Rafikov, Ruslan</creator><creator>Kumar, Sanjiv</creator><creator>Hou, Yali</creator><creator>Oishi, Peter E</creator><creator>Datar, Sanjeev A</creator><creator>Raff, Gary</creator><creator>Fineman, Jeffrey R</creator><creator>Black, Stephen M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120904</creationdate><title>PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow</title><author>Sharma, Shruti ; Sun, Xutong ; Rafikov, Ruslan ; Kumar, Sanjiv ; Hou, Yali ; Oishi, Peter E ; Datar, Sanjeev A ; Raff, Gary ; Fineman, Jeffrey R ; Black, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a014edec34618789aacd2e09d01489fedad7aed6fcb12e34c6a22d8bd59997563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetyltransferase</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>ATP</topic><topic>Biology</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Carnitine</topic><topic>Carnitine - metabolism</topic><topic>Carnitine O-Acetyltransferase - genetics</topic><topic>Carnitine O-Acetyltransferase - metabolism</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Carnitine O-Palmitoyltransferase - metabolism</topic><topic>Children</topic><topic>Diabetes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Health sciences</topic><topic>Homeostasis</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Hsp90 protein</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung - surgery</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Models, Animal</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Pediatrics</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phosphorylation</topic><topic>PPAR gamma - antagonists &amp; inhibitors</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Proteins</topic><topic>Pulmonary Artery - drug effects</topic><topic>Pulmonary Artery - metabolism</topic><topic>Pulmonary Artery - pathology</topic><topic>Pulmonary Artery - surgery</topic><topic>Pulmonary Circulation - drug effects</topic><topic>Pulmonary hypertension</topic><topic>Reduction</topic><topic>Regulatory proteins</topic><topic>Rodents</topic><topic>Rosiglitazone</topic><topic>Shear stress</topic><topic>Sheep, Domestic</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Superoxides - metabolism</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Vasodilator Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shruti</creatorcontrib><creatorcontrib>Sun, Xutong</creatorcontrib><creatorcontrib>Rafikov, Ruslan</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Hou, Yali</creatorcontrib><creatorcontrib>Oishi, Peter E</creatorcontrib><creatorcontrib>Datar, Sanjeev A</creatorcontrib><creatorcontrib>Raff, Gary</creatorcontrib><creatorcontrib>Fineman, Jeffrey R</creatorcontrib><creatorcontrib>Black, Stephen M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Shruti</au><au>Sun, Xutong</au><au>Rafikov, Ruslan</au><au>Kumar, Sanjiv</au><au>Hou, Yali</au><au>Oishi, Peter E</au><au>Datar, Sanjeev A</au><au>Raff, Gary</au><au>Fineman, Jeffrey R</au><au>Black, Stephen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-09-04</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>e41555</spage><pages>e41555-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22962578</pmid><doi>10.1371/journal.pone.0041555</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-09, Vol.7 (9), p.e41555
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326544975
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetyltransferase
Animals
Animals, Newborn
ATP
Biology
Blood
Blood flow
Carnitine
Carnitine - metabolism
Carnitine O-Acetyltransferase - genetics
Carnitine O-Acetyltransferase - metabolism
Carnitine O-Palmitoyltransferase - genetics
Carnitine O-Palmitoyltransferase - metabolism
Children
Diabetes
Gene expression
Gene Expression Regulation - drug effects
Health sciences
Homeostasis
HSP90 Heat-Shock Proteins - genetics
HSP90 Heat-Shock Proteins - metabolism
Hsp90 protein
Isoenzymes - genetics
Isoenzymes - metabolism
Lung - drug effects
Lung - metabolism
Lung - pathology
Lung - surgery
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Models, Animal
Nitric oxide
Nitric Oxide - metabolism
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Oxidative Stress - drug effects
Pediatrics
Peroxisome proliferator-activated receptors
Phosphorylation
PPAR gamma - antagonists & inhibitors
PPAR gamma - genetics
PPAR gamma - metabolism
Proteins
Pulmonary Artery - drug effects
Pulmonary Artery - metabolism
Pulmonary Artery - pathology
Pulmonary Artery - surgery
Pulmonary Circulation - drug effects
Pulmonary hypertension
Reduction
Regulatory proteins
Rodents
Rosiglitazone
Shear stress
Sheep, Domestic
Signal Transduction - drug effects
Signaling
siRNA
Superoxides - metabolism
Thiazolidinediones - pharmacology
Vasodilator Agents - pharmacology
title PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PPAR-%CE%B3%20regulates%20carnitine%20homeostasis%20and%20mitochondrial%20function%20in%20a%20lamb%20model%20of%20increased%20pulmonary%20blood%20flow&rft.jtitle=PloS%20one&rft.au=Sharma,%20Shruti&rft.date=2012-09-04&rft.volume=7&rft.issue=9&rft.spage=e41555&rft.pages=e41555-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0041555&rft_dat=%3Cproquest_plos_%3E2943642701%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326544975&rft_id=info:pmid/22962578&rft_doaj_id=oai_doaj_org_article_a79e930a075b47b2a8661612db632d90&rfr_iscdi=true