Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations

Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-08, Vol.7 (8), p.e43985
Hauptverfasser: Joseph, Thomas L, Lane, David P, Verma, Chandra S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e43985
container_title PloS one
container_volume 7
creator Joseph, Thomas L
Lane, David P
Verma, Chandra S
description Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.
doi_str_mv 10.1371/journal.pone.0043985
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326543572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498243577</galeid><doaj_id>oai_doaj_org_article_fffe6b2a38e8478b87a25c55fafbf269</doaj_id><sourcerecordid>A498243577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM1Xm3ohrIO6AyML7uptOE2TToY2qU0q-u_N7HSXKShILhJOnvPm5OVNkhcoWyJSoLc7Nw4W2mXvrFpmGSUlZ4-SU1QSvMhxRh4fnU-SM-93WcYIz_OnyQnGJcOc8NPk9iZA36o6_XBF0l71wdTKp9CAsT6kX1abBXqXdkpuwRrfpWDrNAKmsenojW1SCK4zPhiZetONLQTjrH-WPNHQevV82s-Tb58-3q6uFpvrz-vV5WYh8xKHBS1oSVXJgeAiwxJ4nReM00KhGgOrlKI5KmhNKCNEMpnLTCLOC10hqDSHgpwnrw66feu8mAzxAhGcM0pYgSOxPhC1g53oB9PB8Fs4MOKu4IZGwBCnb5XQWqu8wkC4ijPwiheAmWRMg640zsuo9X56baw6VUtlwwDtTHR-Y81WNO6nIJTgLKdR4PUkMLgfo_LhHyNPVANxKmO1i2IymizFJS053lP7ry__QsVVq87IGAltYn3W8GbWEJmgfoUGRu_F-ubr_7PX3-fsxRG7VdCGrXfteBeEOUgPoByc94PSD86hTOwTfe-G2CdaTImObS-PXX9ouo8w-QPuh_BP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326543572</pqid></control><display><type>article</type><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S</creator><contributor>Srinivasan, Narayanaswamy</contributor><creatorcontrib>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S ; Srinivasan, Narayanaswamy</creatorcontrib><description>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0043985</identifier><identifier>PMID: 22952838</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Amino Acid Sequence ; Apoptosis ; Binding ; Bioinformatics ; Biology ; Cell cycle ; Chemistry ; Computer Science ; Crack propagation ; Cytochrome ; Drug Design ; Helices ; Humans ; Hydrocarbons ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Leukemia ; Ligands ; Lymphoma ; Mcl-1 protein ; MDM2 protein ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; p53 Protein ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Peptides ; Physics ; Physiological aspects ; Properties ; Protein Structure, Secondary ; Proteins ; Proto-Oncogene Proteins - chemistry ; Proto-Oncogene Proteins - pharmacology ; Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-bcl-2 - chemistry ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Science ; Simulation ; Solutions ; Staples ; Structure</subject><ispartof>PloS one, 2012-08, Vol.7 (8), p.e43985</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Joseph et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Joseph et al 2012 Joseph et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432064/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432064/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22952838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Srinivasan, Narayanaswamy</contributor><creatorcontrib>Joseph, Thomas L</creatorcontrib><creatorcontrib>Lane, David P</creatorcontrib><creatorcontrib>Verma, Chandra S</creatorcontrib><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</description><subject>Affinity</subject><subject>Amino Acid Sequence</subject><subject>Apoptosis</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Chemistry</subject><subject>Computer Science</subject><subject>Crack propagation</subject><subject>Cytochrome</subject><subject>Drug Design</subject><subject>Helices</subject><subject>Humans</subject><subject>Hydrocarbons</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Leukemia</subject><subject>Ligands</subject><subject>Lymphoma</subject><subject>Mcl-1 protein</subject><subject>MDM2 protein</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Myeloid Cell Leukemia Sequence 1 Protein</subject><subject>p53 Protein</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Peptides</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - chemistry</subject><subject>Proto-Oncogene Proteins - pharmacology</subject><subject>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - chemistry</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Science</subject><subject>Simulation</subject><subject>Solutions</subject><subject>Staples</subject><subject>Structure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM1Xm3ohrIO6AyML7uptOE2TToY2qU0q-u_N7HSXKShILhJOnvPm5OVNkhcoWyJSoLc7Nw4W2mXvrFpmGSUlZ4-SU1QSvMhxRh4fnU-SM-93WcYIz_OnyQnGJcOc8NPk9iZA36o6_XBF0l71wdTKp9CAsT6kX1abBXqXdkpuwRrfpWDrNAKmsenojW1SCK4zPhiZetONLQTjrH-WPNHQevV82s-Tb58-3q6uFpvrz-vV5WYh8xKHBS1oSVXJgeAiwxJ4nReM00KhGgOrlKI5KmhNKCNEMpnLTCLOC10hqDSHgpwnrw66feu8mAzxAhGcM0pYgSOxPhC1g53oB9PB8Fs4MOKu4IZGwBCnb5XQWqu8wkC4ijPwiheAmWRMg640zsuo9X56baw6VUtlwwDtTHR-Y81WNO6nIJTgLKdR4PUkMLgfo_LhHyNPVANxKmO1i2IymizFJS053lP7ry__QsVVq87IGAltYn3W8GbWEJmgfoUGRu_F-ubr_7PX3-fsxRG7VdCGrXfteBeEOUgPoByc94PSD86hTOwTfe-G2CdaTImObS-PXX9ouo8w-QPuh_BP</recordid><startdate>20120831</startdate><enddate>20120831</enddate><creator>Joseph, Thomas L</creator><creator>Lane, David P</creator><creator>Verma, Chandra S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120831</creationdate><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><author>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Affinity</topic><topic>Amino Acid Sequence</topic><topic>Apoptosis</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Chemistry</topic><topic>Computer Science</topic><topic>Crack propagation</topic><topic>Cytochrome</topic><topic>Drug Design</topic><topic>Helices</topic><topic>Humans</topic><topic>Hydrocarbons</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Leukemia</topic><topic>Ligands</topic><topic>Lymphoma</topic><topic>Mcl-1 protein</topic><topic>MDM2 protein</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Myeloid Cell Leukemia Sequence 1 Protein</topic><topic>p53 Protein</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Peptides</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - chemistry</topic><topic>Proto-Oncogene Proteins - pharmacology</topic><topic>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - chemistry</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Science</topic><topic>Simulation</topic><topic>Solutions</topic><topic>Staples</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Thomas L</creatorcontrib><creatorcontrib>Lane, David P</creatorcontrib><creatorcontrib>Verma, Chandra S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Thomas L</au><au>Lane, David P</au><au>Verma, Chandra S</au><au>Srinivasan, Narayanaswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-08-31</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>e43985</spage><pages>e43985-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22952838</pmid><doi>10.1371/journal.pone.0043985</doi><tpages>e43985</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-08, Vol.7 (8), p.e43985
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326543572
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Affinity
Amino Acid Sequence
Apoptosis
Binding
Bioinformatics
Biology
Cell cycle
Chemistry
Computer Science
Crack propagation
Cytochrome
Drug Design
Helices
Humans
Hydrocarbons
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Leukemia
Ligands
Lymphoma
Mcl-1 protein
MDM2 protein
Molecular dynamics
Molecular Dynamics Simulation
Molecular Sequence Data
Mutation
Myeloid Cell Leukemia Sequence 1 Protein
p53 Protein
Peptide Fragments - chemistry
Peptide Fragments - pharmacology
Peptides
Physics
Physiological aspects
Properties
Protein Structure, Secondary
Proteins
Proto-Oncogene Proteins - chemistry
Proto-Oncogene Proteins - pharmacology
Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors
Proto-Oncogene Proteins c-bcl-2 - chemistry
Proto-Oncogene Proteins c-bcl-2 - genetics
Science
Simulation
Solutions
Staples
Structure
title Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stapled%20BH3%20peptides%20against%20MCL-1:%20mechanism%20and%20design%20using%20atomistic%20simulations&rft.jtitle=PloS%20one&rft.au=Joseph,%20Thomas%20L&rft.date=2012-08-31&rft.volume=7&rft.issue=8&rft.spage=e43985&rft.pages=e43985-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0043985&rft_dat=%3Cgale_plos_%3EA498243577%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326543572&rft_id=info:pmid/22952838&rft_galeid=A498243577&rft_doaj_id=oai_doaj_org_article_fffe6b2a38e8478b87a25c55fafbf269&rfr_iscdi=true