Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations
Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-08, Vol.7 (8), p.e43985 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e43985 |
container_title | PloS one |
container_volume | 7 |
creator | Joseph, Thomas L Lane, David P Verma, Chandra S |
description | Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities. |
doi_str_mv | 10.1371/journal.pone.0043985 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326543572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498243577</galeid><doaj_id>oai_doaj_org_article_fffe6b2a38e8478b87a25c55fafbf269</doaj_id><sourcerecordid>A498243577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM1Xm3ohrIO6AyML7uptOE2TToY2qU0q-u_N7HSXKShILhJOnvPm5OVNkhcoWyJSoLc7Nw4W2mXvrFpmGSUlZ4-SU1QSvMhxRh4fnU-SM-93WcYIz_OnyQnGJcOc8NPk9iZA36o6_XBF0l71wdTKp9CAsT6kX1abBXqXdkpuwRrfpWDrNAKmsenojW1SCK4zPhiZetONLQTjrH-WPNHQevV82s-Tb58-3q6uFpvrz-vV5WYh8xKHBS1oSVXJgeAiwxJ4nReM00KhGgOrlKI5KmhNKCNEMpnLTCLOC10hqDSHgpwnrw66feu8mAzxAhGcM0pYgSOxPhC1g53oB9PB8Fs4MOKu4IZGwBCnb5XQWqu8wkC4ijPwiheAmWRMg640zsuo9X56baw6VUtlwwDtTHR-Y81WNO6nIJTgLKdR4PUkMLgfo_LhHyNPVANxKmO1i2IymizFJS053lP7ry__QsVVq87IGAltYn3W8GbWEJmgfoUGRu_F-ubr_7PX3-fsxRG7VdCGrXfteBeEOUgPoByc94PSD86hTOwTfe-G2CdaTImObS-PXX9ouo8w-QPuh_BP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326543572</pqid></control><display><type>article</type><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S</creator><contributor>Srinivasan, Narayanaswamy</contributor><creatorcontrib>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S ; Srinivasan, Narayanaswamy</creatorcontrib><description>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0043985</identifier><identifier>PMID: 22952838</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Amino Acid Sequence ; Apoptosis ; Binding ; Bioinformatics ; Biology ; Cell cycle ; Chemistry ; Computer Science ; Crack propagation ; Cytochrome ; Drug Design ; Helices ; Humans ; Hydrocarbons ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Leukemia ; Ligands ; Lymphoma ; Mcl-1 protein ; MDM2 protein ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; p53 Protein ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Peptides ; Physics ; Physiological aspects ; Properties ; Protein Structure, Secondary ; Proteins ; Proto-Oncogene Proteins - chemistry ; Proto-Oncogene Proteins - pharmacology ; Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors ; Proto-Oncogene Proteins c-bcl-2 - chemistry ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Science ; Simulation ; Solutions ; Staples ; Structure</subject><ispartof>PloS one, 2012-08, Vol.7 (8), p.e43985</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Joseph et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Joseph et al 2012 Joseph et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432064/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432064/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22952838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Srinivasan, Narayanaswamy</contributor><creatorcontrib>Joseph, Thomas L</creatorcontrib><creatorcontrib>Lane, David P</creatorcontrib><creatorcontrib>Verma, Chandra S</creatorcontrib><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</description><subject>Affinity</subject><subject>Amino Acid Sequence</subject><subject>Apoptosis</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Chemistry</subject><subject>Computer Science</subject><subject>Crack propagation</subject><subject>Cytochrome</subject><subject>Drug Design</subject><subject>Helices</subject><subject>Humans</subject><subject>Hydrocarbons</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Leukemia</subject><subject>Ligands</subject><subject>Lymphoma</subject><subject>Mcl-1 protein</subject><subject>MDM2 protein</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Myeloid Cell Leukemia Sequence 1 Protein</subject><subject>p53 Protein</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Peptides</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - chemistry</subject><subject>Proto-Oncogene Proteins - pharmacology</subject><subject>Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - chemistry</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Science</subject><subject>Simulation</subject><subject>Solutions</subject><subject>Staples</subject><subject>Structure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCsODFjM1Xm3ohrIO6AyML7uptOE2TToY2qU0q-u_N7HSXKShILhJOnvPm5OVNkhcoWyJSoLc7Nw4W2mXvrFpmGSUlZ4-SU1QSvMhxRh4fnU-SM-93WcYIz_OnyQnGJcOc8NPk9iZA36o6_XBF0l71wdTKp9CAsT6kX1abBXqXdkpuwRrfpWDrNAKmsenojW1SCK4zPhiZetONLQTjrH-WPNHQevV82s-Tb58-3q6uFpvrz-vV5WYh8xKHBS1oSVXJgeAiwxJ4nReM00KhGgOrlKI5KmhNKCNEMpnLTCLOC10hqDSHgpwnrw66feu8mAzxAhGcM0pYgSOxPhC1g53oB9PB8Fs4MOKu4IZGwBCnb5XQWqu8wkC4ijPwiheAmWRMg640zsuo9X56baw6VUtlwwDtTHR-Y81WNO6nIJTgLKdR4PUkMLgfo_LhHyNPVANxKmO1i2IymizFJS053lP7ry__QsVVq87IGAltYn3W8GbWEJmgfoUGRu_F-ubr_7PX3-fsxRG7VdCGrXfteBeEOUgPoByc94PSD86hTOwTfe-G2CdaTImObS-PXX9ouo8w-QPuh_BP</recordid><startdate>20120831</startdate><enddate>20120831</enddate><creator>Joseph, Thomas L</creator><creator>Lane, David P</creator><creator>Verma, Chandra S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120831</creationdate><title>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</title><author>Joseph, Thomas L ; Lane, David P ; Verma, Chandra S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-47494e98a32702ca8d675847e1d2a5bee46174d34533c5c6c0c1887fb1abf8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Affinity</topic><topic>Amino Acid Sequence</topic><topic>Apoptosis</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Chemistry</topic><topic>Computer Science</topic><topic>Crack propagation</topic><topic>Cytochrome</topic><topic>Drug Design</topic><topic>Helices</topic><topic>Humans</topic><topic>Hydrocarbons</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Leukemia</topic><topic>Ligands</topic><topic>Lymphoma</topic><topic>Mcl-1 protein</topic><topic>MDM2 protein</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Myeloid Cell Leukemia Sequence 1 Protein</topic><topic>p53 Protein</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Peptides</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - chemistry</topic><topic>Proto-Oncogene Proteins - pharmacology</topic><topic>Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - chemistry</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Science</topic><topic>Simulation</topic><topic>Solutions</topic><topic>Staples</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Thomas L</creatorcontrib><creatorcontrib>Lane, David P</creatorcontrib><creatorcontrib>Verma, Chandra S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Thomas L</au><au>Lane, David P</au><au>Verma, Chandra S</au><au>Srinivasan, Narayanaswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-08-31</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>e43985</spage><pages>e43985-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Atomistic simulations of a set of stapled alpha helical peptides derived from the BH3 helix of MCL-1 (Stewart et al. (2010) Nat Chem Biol 6: 595-601) complexed to a fragment (residues 172-320) of MCL-1 revealed that the highest affinity is achieved when the staples engage the surface of MCL-1 as has also been demonstrated for p53-MDM2 (Joseph et al. (2010) Cell Cycle 9: 4560-4568; Baek et al. (2012) J Am Chem Soc 134: 103-106). Affinity is also modulated by the ability of the staples to pre-organize the peptides as helices. Molecular dynamics simulations of these stapled BH3 peptides were carried out followed by determination of the energies of interactions using MM/GBSA methods. These show that the location of the staple is a key determinant of a good binding stapled peptide from a bad binder. The good binder derives binding affinity from interactions between the hydrophobic staple and a hydrophobic patch on MCL-1. The position of the staple was varied, guiding the design of new stapled peptides with higher affinities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22952838</pmid><doi>10.1371/journal.pone.0043985</doi><tpages>e43985</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-08, Vol.7 (8), p.e43985 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326543572 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Affinity Amino Acid Sequence Apoptosis Binding Bioinformatics Biology Cell cycle Chemistry Computer Science Crack propagation Cytochrome Drug Design Helices Humans Hydrocarbons Hydrophobic and Hydrophilic Interactions Hydrophobicity Leukemia Ligands Lymphoma Mcl-1 protein MDM2 protein Molecular dynamics Molecular Dynamics Simulation Molecular Sequence Data Mutation Myeloid Cell Leukemia Sequence 1 Protein p53 Protein Peptide Fragments - chemistry Peptide Fragments - pharmacology Peptides Physics Physiological aspects Properties Protein Structure, Secondary Proteins Proto-Oncogene Proteins - chemistry Proto-Oncogene Proteins - pharmacology Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors Proto-Oncogene Proteins c-bcl-2 - chemistry Proto-Oncogene Proteins c-bcl-2 - genetics Science Simulation Solutions Staples Structure |
title | Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stapled%20BH3%20peptides%20against%20MCL-1:%20mechanism%20and%20design%20using%20atomistic%20simulations&rft.jtitle=PloS%20one&rft.au=Joseph,%20Thomas%20L&rft.date=2012-08-31&rft.volume=7&rft.issue=8&rft.spage=e43985&rft.pages=e43985-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0043985&rft_dat=%3Cgale_plos_%3EA498243577%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326543572&rft_id=info:pmid/22952838&rft_galeid=A498243577&rft_doaj_id=oai_doaj_org_article_fffe6b2a38e8478b87a25c55fafbf269&rfr_iscdi=true |