Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans
Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these ne...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-08, Vol.7 (8), p.e43164-e43164 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e43164 |
---|---|
container_issue | 8 |
container_start_page | e43164 |
container_title | PloS one |
container_volume | 7 |
creator | Schmitt, Cornelia Schultheis, Christian Pokala, Navin Husson, Steven J Liewald, Jana F Bargmann, Cornelia I Gottschalk, Alexander |
description | Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron. |
doi_str_mv | 10.1371/journal.pone.0043164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1326450611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3695ae93f0194176b4ab75b4dfc9dca8</doaj_id><sourcerecordid>2943628281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-2b8c1ed80322e7c1f6a5970041b5fcdc13b2791dcb1b84be62426c23b76a43923</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBAVLYV_gCASFy5Z_BUnviChVQuVKvVQerb88bLrldcOdoLg3-Nl06pFPfnJnpn3xm-q6h1GK0w7_HkX5xSUX40xwAohRjFnL6ozLChpOEH05aP6tHqd8w6hlvacv6pOCREt4YyeVXe3Ixg3OFPD7zFBzi6GOg612aoQwKdttHHMLjSkdqEuxcZDHWBOMeQDbq0gxLRV2rrJ5Ro8bFTIb6qTQfkMb5fzvLq7vPix_t5c33y7Wn-9bkwryNQQ3RsMtkeUEOgMHrhqRVe8YN0OxhpMNekEtkZj3TMNnDDCDaG644pRQeh59eGoO_qY5fIjWWJazLWIY1wQV0eEjWonx-T2Kv2RUTn57yKmjVRpcsaDpFy0CgQdEBYMd1wzpbtWMzsYYY3qi9aXpdus92ANhCkp_0T06UtwW7mJvyQty2EIFYFPi0CKP2fIk9y7bMB7FSDOZW5U9oPavqMF-vE_6PPu2BFlUsw5wfAwDEbykJJ7ljykRC4pKbT3j408kO5jQf8CAlm7Xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326450611</pqid></control><display><type>article</type><title>Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Public Library of Science</source><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmitt, Cornelia ; Schultheis, Christian ; Pokala, Navin ; Husson, Steven J ; Liewald, Jana F ; Bargmann, Cornelia I ; Gottschalk, Alexander</creator><contributor>Hart, Anne C.</contributor><creatorcontrib>Schmitt, Cornelia ; Schultheis, Christian ; Pokala, Navin ; Husson, Steven J ; Liewald, Jana F ; Bargmann, Cornelia I ; Gottschalk, Alexander ; Hart, Anne C.</creatorcontrib><description>Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0043164</identifier><identifier>PMID: 22952643</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Behavior, Animal ; Biochemistry ; Biology ; Caenorhabditis elegans ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - biosynthesis ; Caenorhabditis elegans Proteins - genetics ; Deoxyribonucleic acid ; DNA ; Gene Expression Profiling ; Gene Expression Regulation ; Green Fluorescent Proteins - metabolism ; Illumination ; Life sciences ; Light ; Microscopy, Fluorescence - methods ; Models, Biological ; Models, Genetic ; Nematodes ; Nervous system ; Neurons ; Neurons - metabolism ; Plasmids - metabolism ; Populations ; Promoter Regions, Genetic ; Promoters ; Proteins ; Recombinase ; Recombinases - metabolism ; Rhodopsin - biosynthesis ; Rhodopsin - genetics ; Rodents ; Sensory neurons ; Stem cells ; Transgenes ; Worms</subject><ispartof>PloS one, 2012-08, Vol.7 (8), p.e43164-e43164</ispartof><rights>Schmitt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Schmitt et al 2012 Schmitt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-2b8c1ed80322e7c1f6a5970041b5fcdc13b2791dcb1b84be62426c23b76a43923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431400/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22952643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hart, Anne C.</contributor><creatorcontrib>Schmitt, Cornelia</creatorcontrib><creatorcontrib>Schultheis, Christian</creatorcontrib><creatorcontrib>Pokala, Navin</creatorcontrib><creatorcontrib>Husson, Steven J</creatorcontrib><creatorcontrib>Liewald, Jana F</creatorcontrib><creatorcontrib>Bargmann, Cornelia I</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><title>Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - biosynthesis</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Illumination</subject><subject>Life sciences</subject><subject>Light</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Nematodes</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Plasmids - metabolism</subject><subject>Populations</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Proteins</subject><subject>Recombinase</subject><subject>Recombinases - metabolism</subject><subject>Rhodopsin - biosynthesis</subject><subject>Rhodopsin - genetics</subject><subject>Rodents</subject><subject>Sensory neurons</subject><subject>Stem cells</subject><subject>Transgenes</subject><subject>Worms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBAVLYV_gCASFy5Z_BUnviChVQuVKvVQerb88bLrldcOdoLg3-Nl06pFPfnJnpn3xm-q6h1GK0w7_HkX5xSUX40xwAohRjFnL6ozLChpOEH05aP6tHqd8w6hlvacv6pOCREt4YyeVXe3Ixg3OFPD7zFBzi6GOg612aoQwKdttHHMLjSkdqEuxcZDHWBOMeQDbq0gxLRV2rrJ5Ro8bFTIb6qTQfkMb5fzvLq7vPix_t5c33y7Wn-9bkwryNQQ3RsMtkeUEOgMHrhqRVe8YN0OxhpMNekEtkZj3TMNnDDCDaG644pRQeh59eGoO_qY5fIjWWJazLWIY1wQV0eEjWonx-T2Kv2RUTn57yKmjVRpcsaDpFy0CgQdEBYMd1wzpbtWMzsYYY3qi9aXpdus92ANhCkp_0T06UtwW7mJvyQty2EIFYFPi0CKP2fIk9y7bMB7FSDOZW5U9oPavqMF-vE_6PPu2BFlUsw5wfAwDEbykJJ7ljykRC4pKbT3j408kO5jQf8CAlm7Xw</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Schmitt, Cornelia</creator><creator>Schultheis, Christian</creator><creator>Pokala, Navin</creator><creator>Husson, Steven J</creator><creator>Liewald, Jana F</creator><creator>Bargmann, Cornelia I</creator><creator>Gottschalk, Alexander</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120830</creationdate><title>Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans</title><author>Schmitt, Cornelia ; Schultheis, Christian ; Pokala, Navin ; Husson, Steven J ; Liewald, Jana F ; Bargmann, Cornelia I ; Gottschalk, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-2b8c1ed80322e7c1f6a5970041b5fcdc13b2791dcb1b84be62426c23b76a43923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - biosynthesis</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Illumination</topic><topic>Life sciences</topic><topic>Light</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Nematodes</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Plasmids - metabolism</topic><topic>Populations</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Proteins</topic><topic>Recombinase</topic><topic>Recombinases - metabolism</topic><topic>Rhodopsin - biosynthesis</topic><topic>Rhodopsin - genetics</topic><topic>Rodents</topic><topic>Sensory neurons</topic><topic>Stem cells</topic><topic>Transgenes</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Cornelia</creatorcontrib><creatorcontrib>Schultheis, Christian</creatorcontrib><creatorcontrib>Pokala, Navin</creatorcontrib><creatorcontrib>Husson, Steven J</creatorcontrib><creatorcontrib>Liewald, Jana F</creatorcontrib><creatorcontrib>Bargmann, Cornelia I</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Cornelia</au><au>Schultheis, Christian</au><au>Pokala, Navin</au><au>Husson, Steven J</au><au>Liewald, Jana F</au><au>Bargmann, Cornelia I</au><au>Gottschalk, Alexander</au><au>Hart, Anne C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-08-30</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>e43164</spage><epage>e43164</epage><pages>e43164-e43164</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22952643</pmid><doi>10.1371/journal.pone.0043164</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-08, Vol.7 (8), p.e43164-e43164 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326450611 |
source | PubMed Central Free; MEDLINE; Public Library of Science; EZB Free E-Journals; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Behavior, Animal Biochemistry Biology Caenorhabditis elegans Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - biosynthesis Caenorhabditis elegans Proteins - genetics Deoxyribonucleic acid DNA Gene Expression Profiling Gene Expression Regulation Green Fluorescent Proteins - metabolism Illumination Life sciences Light Microscopy, Fluorescence - methods Models, Biological Models, Genetic Nematodes Nervous system Neurons Neurons - metabolism Plasmids - metabolism Populations Promoter Regions, Genetic Promoters Proteins Recombinase Recombinases - metabolism Rhodopsin - biosynthesis Rhodopsin - genetics Rodents Sensory neurons Stem cells Transgenes Worms |
title | Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20expression%20of%20channelrhodopsin-2%20in%20single%20neurons%20of%20Caenorhabditis%20elegans&rft.jtitle=PloS%20one&rft.au=Schmitt,%20Cornelia&rft.date=2012-08-30&rft.volume=7&rft.issue=8&rft.spage=e43164&rft.epage=e43164&rft.pages=e43164-e43164&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0043164&rft_dat=%3Cproquest_plos_%3E2943628281%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326450611&rft_id=info:pmid/22952643&rft_doaj_id=oai_doaj_org_article_3695ae93f0194176b4ab75b4dfc9dca8&rfr_iscdi=true |