Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis

The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-08, Vol.7 (8), p.e42915-e42915
Hauptverfasser: Ku, Bon Jeong, Kim, Tae Hoon, Lee, Jae Hee, Buras, Eric D, White, Lisa D, Stevens, Robert D, Ilkayeva, Olga R, Bain, James R, Newgard, Christopher B, DeMayo, Francesco J, Jeong, Jae-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e42915
container_issue 8
container_start_page e42915
container_title PloS one
container_volume 7
creator Ku, Bon Jeong
Kim, Tae Hoon
Lee, Jae Hee
Buras, Eric D
White, Lisa D
Stevens, Robert D
Ilkayeva, Olga R
Bain, James R
Newgard, Christopher B
DeMayo, Francesco J
Jeong, Jae-Wook
description The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.
doi_str_mv 10.1371/journal.pone.0042915
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326267498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498260247</galeid><doaj_id>oai_doaj_org_article_0e6359e405594a9ba2f1da5581cf38fe</doaj_id><sourcerecordid>A498260247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-f3f5cb5948112dd579c3b72b3da36364467a7648a542822fe82f965c284139df3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgujFjPlueyMsix8DKwt-3cY0TTpZMs2YtOL8e8843WUqeyG9SMl53vfknOQUxVOCl4SV5M11HFOvw3Ibe7vEmNOaiHvFKakZXUiK2f2j_5PiUc7XGAtWSfmwOKEA01LS0-LHJ98tJNoGvctII5P84I0OKMVgke_RsLYo2W4MevCxR9Ehs4ZQHiwQaB03NuZBZw_ivkWNB5U2vkV514MU9h8XD5wO2T6Z1rPi2_t3Xy8-Li6vPqwuzi8XphTVsHDMCdOImleE0LYVZW1YU9KGtZpJJjmXpS4lr7TgtKLU2Yq6WgpDK05Y3Tp2Vjw_-G5DzGpqTlaEUUllyesKiNWBaKO-VtvkNzrtVNRe_d2IqVM6QfXBKmwlE7XlWMCJdN1o6kirhaiIcaxyFrzeTtnGZmNbY_sh6TAznUd6v1Zd_KUYp5SyEgxeTQYp_hyhn2rjs7Eh6N7GEc6NGa8wkYIC-uIf9O7qJqrTUIDvXYS8Zm-qziFOJaZ8n3Z5BwVfazfewEtycINzweuZAJjB_h46PeasVl8-_z979X3Ovjxi11aHYZ1jGPevLM9BfgBNijkn626bTLDaD8JNN9R-ENQ0CCB7dnxBt6Kbl8_-AOo9Acg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326267498</pqid></control><display><type>article</type><title>Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ku, Bon Jeong ; Kim, Tae Hoon ; Lee, Jae Hee ; Buras, Eric D ; White, Lisa D ; Stevens, Robert D ; Ilkayeva, Olga R ; Bain, James R ; Newgard, Christopher B ; DeMayo, Francesco J ; Jeong, Jae-Wook</creator><contributor>Lobaccaro, Jean-Marc A.</contributor><creatorcontrib>Ku, Bon Jeong ; Kim, Tae Hoon ; Lee, Jae Hee ; Buras, Eric D ; White, Lisa D ; Stevens, Robert D ; Ilkayeva, Olga R ; Bain, James R ; Newgard, Christopher B ; DeMayo, Francesco J ; Jeong, Jae-Wook ; Lobaccaro, Jean-Marc A.</creatorcontrib><description>The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0042915</identifier><identifier>PMID: 22912762</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Albumin ; Amino acids ; Analysis ; Animals ; Azo Compounds ; Bile ; Bile acids ; Bile Acids and Salts - analysis ; Bile Acids and Salts - biosynthesis ; Biology ; Blood cholesterol ; Blotting, Western ; Cardiovascular diseases ; Cardiovascular Diseases - etiology ; Chemical synthesis ; Cholesterol ; Cholesterol - blood ; Cholesterol - metabolism ; Deoxycholic acid ; Deoxyribonucleic acid ; DNA ; DNA microarrays ; Excretion ; Fatty liver ; Feces - chemistry ; Gene expression ; Gene Expression Regulation - genetics ; Genes ; High density lipoprotein ; Homeostasis ; Homeostasis - physiology ; Hormones ; House mouse ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Lipid metabolism ; Liver ; Liver - metabolism ; Low density lipoprotein ; Low density lipoproteins ; Medical treatment ; Medicine ; Metabolism ; Mice ; Microarray Analysis ; Mitogens ; Molecular modelling ; mRNA ; Nutrition ; Physiological aspects ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA ; Rodents ; Serum levels</subject><ispartof>PloS one, 2012-08, Vol.7 (8), p.e42915-e42915</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Ku et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Ku et al 2012 Ku et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-f3f5cb5948112dd579c3b72b3da36364467a7648a542822fe82f965c284139df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22912762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lobaccaro, Jean-Marc A.</contributor><creatorcontrib>Ku, Bon Jeong</creatorcontrib><creatorcontrib>Kim, Tae Hoon</creatorcontrib><creatorcontrib>Lee, Jae Hee</creatorcontrib><creatorcontrib>Buras, Eric D</creatorcontrib><creatorcontrib>White, Lisa D</creatorcontrib><creatorcontrib>Stevens, Robert D</creatorcontrib><creatorcontrib>Ilkayeva, Olga R</creatorcontrib><creatorcontrib>Bain, James R</creatorcontrib><creatorcontrib>Newgard, Christopher B</creatorcontrib><creatorcontrib>DeMayo, Francesco J</creatorcontrib><creatorcontrib>Jeong, Jae-Wook</creatorcontrib><title>Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.</description><subject>Acids</subject><subject>Albumin</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Azo Compounds</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - analysis</subject><subject>Bile Acids and Salts - biosynthesis</subject><subject>Biology</subject><subject>Blood cholesterol</subject><subject>Blotting, Western</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - etiology</subject><subject>Chemical synthesis</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Deoxycholic acid</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Excretion</subject><subject>Fatty liver</subject><subject>Feces - chemistry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genes</subject><subject>High density lipoprotein</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Hormones</subject><subject>House mouse</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Lipid metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Low density lipoprotein</subject><subject>Low density lipoproteins</subject><subject>Medical treatment</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microarray Analysis</subject><subject>Mitogens</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Nutrition</subject><subject>Physiological aspects</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA</subject><subject>Rodents</subject><subject>Serum levels</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgujFjPlueyMsix8DKwt-3cY0TTpZMs2YtOL8e8843WUqeyG9SMl53vfknOQUxVOCl4SV5M11HFOvw3Ibe7vEmNOaiHvFKakZXUiK2f2j_5PiUc7XGAtWSfmwOKEA01LS0-LHJ98tJNoGvctII5P84I0OKMVgke_RsLYo2W4MevCxR9Ehs4ZQHiwQaB03NuZBZw_ivkWNB5U2vkV514MU9h8XD5wO2T6Z1rPi2_t3Xy8-Li6vPqwuzi8XphTVsHDMCdOImleE0LYVZW1YU9KGtZpJJjmXpS4lr7TgtKLU2Yq6WgpDK05Y3Tp2Vjw_-G5DzGpqTlaEUUllyesKiNWBaKO-VtvkNzrtVNRe_d2IqVM6QfXBKmwlE7XlWMCJdN1o6kirhaiIcaxyFrzeTtnGZmNbY_sh6TAznUd6v1Zd_KUYp5SyEgxeTQYp_hyhn2rjs7Eh6N7GEc6NGa8wkYIC-uIf9O7qJqrTUIDvXYS8Zm-qziFOJaZ8n3Z5BwVfazfewEtycINzweuZAJjB_h46PeasVl8-_z979X3Ovjxi11aHYZ1jGPevLM9BfgBNijkn626bTLDaD8JNN9R-ENQ0CCB7dnxBt6Kbl8_-AOo9Acg</recordid><startdate>20120817</startdate><enddate>20120817</enddate><creator>Ku, Bon Jeong</creator><creator>Kim, Tae Hoon</creator><creator>Lee, Jae Hee</creator><creator>Buras, Eric D</creator><creator>White, Lisa D</creator><creator>Stevens, Robert D</creator><creator>Ilkayeva, Olga R</creator><creator>Bain, James R</creator><creator>Newgard, Christopher B</creator><creator>DeMayo, Francesco J</creator><creator>Jeong, Jae-Wook</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120817</creationdate><title>Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis</title><author>Ku, Bon Jeong ; Kim, Tae Hoon ; Lee, Jae Hee ; Buras, Eric D ; White, Lisa D ; Stevens, Robert D ; Ilkayeva, Olga R ; Bain, James R ; Newgard, Christopher B ; DeMayo, Francesco J ; Jeong, Jae-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-f3f5cb5948112dd579c3b72b3da36364467a7648a542822fe82f965c284139df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>Albumin</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Azo Compounds</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - analysis</topic><topic>Bile Acids and Salts - biosynthesis</topic><topic>Biology</topic><topic>Blood cholesterol</topic><topic>Blotting, Western</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - etiology</topic><topic>Chemical synthesis</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Deoxycholic acid</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Excretion</topic><topic>Fatty liver</topic><topic>Feces - chemistry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genes</topic><topic>High density lipoprotein</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Hormones</topic><topic>House mouse</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Lipid metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Low density lipoprotein</topic><topic>Low density lipoproteins</topic><topic>Medical treatment</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microarray Analysis</topic><topic>Mitogens</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Nutrition</topic><topic>Physiological aspects</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA</topic><topic>Rodents</topic><topic>Serum levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ku, Bon Jeong</creatorcontrib><creatorcontrib>Kim, Tae Hoon</creatorcontrib><creatorcontrib>Lee, Jae Hee</creatorcontrib><creatorcontrib>Buras, Eric D</creatorcontrib><creatorcontrib>White, Lisa D</creatorcontrib><creatorcontrib>Stevens, Robert D</creatorcontrib><creatorcontrib>Ilkayeva, Olga R</creatorcontrib><creatorcontrib>Bain, James R</creatorcontrib><creatorcontrib>Newgard, Christopher B</creatorcontrib><creatorcontrib>DeMayo, Francesco J</creatorcontrib><creatorcontrib>Jeong, Jae-Wook</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ku, Bon Jeong</au><au>Kim, Tae Hoon</au><au>Lee, Jae Hee</au><au>Buras, Eric D</au><au>White, Lisa D</au><au>Stevens, Robert D</au><au>Ilkayeva, Olga R</au><au>Bain, James R</au><au>Newgard, Christopher B</au><au>DeMayo, Francesco J</au><au>Jeong, Jae-Wook</au><au>Lobaccaro, Jean-Marc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-08-17</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>e42915</spage><epage>e42915</epage><pages>e42915-e42915</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22912762</pmid><doi>10.1371/journal.pone.0042915</doi><tpages>e42915</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-08, Vol.7 (8), p.e42915-e42915
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326267498
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Albumin
Amino acids
Analysis
Animals
Azo Compounds
Bile
Bile acids
Bile Acids and Salts - analysis
Bile Acids and Salts - biosynthesis
Biology
Blood cholesterol
Blotting, Western
Cardiovascular diseases
Cardiovascular Diseases - etiology
Chemical synthesis
Cholesterol
Cholesterol - blood
Cholesterol - metabolism
Deoxycholic acid
Deoxyribonucleic acid
DNA
DNA microarrays
Excretion
Fatty liver
Feces - chemistry
Gene expression
Gene Expression Regulation - genetics
Genes
High density lipoprotein
Homeostasis
Homeostasis - physiology
Hormones
House mouse
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Lipid metabolism
Liver
Liver - metabolism
Low density lipoprotein
Low density lipoproteins
Medical treatment
Medicine
Metabolism
Mice
Microarray Analysis
Mitogens
Molecular modelling
mRNA
Nutrition
Physiological aspects
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA
Rodents
Serum levels
title Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mig-6%20plays%20a%20critical%20role%20in%20the%20regulation%20of%20cholesterol%20homeostasis%20and%20bile%20acid%20synthesis&rft.jtitle=PloS%20one&rft.au=Ku,%20Bon%20Jeong&rft.date=2012-08-17&rft.volume=7&rft.issue=8&rft.spage=e42915&rft.epage=e42915&rft.pages=e42915-e42915&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0042915&rft_dat=%3Cgale_plos_%3EA498260247%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326267498&rft_id=info:pmid/22912762&rft_galeid=A498260247&rft_doaj_id=oai_doaj_org_article_0e6359e405594a9ba2f1da5581cf38fe&rfr_iscdi=true