Predicting glass transition temperatures of polyarylethersulphones using QSPR methods

The technique of Quantitative Structure Property Relationships has been applied to the glass transition temperatures of polyarylethersulphones. A general equation is reported that calculates the glass transition temperatures with acceptable accuracy (correlation coefficients of between 90-67%, indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e38424-e38424
Hauptverfasser: Hamerton, Ian, Howlin, Brendan J, Kamyszek, Grzegorz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e38424
container_issue 6
container_start_page e38424
container_title PloS one
container_volume 7
creator Hamerton, Ian
Howlin, Brendan J
Kamyszek, Grzegorz
description The technique of Quantitative Structure Property Relationships has been applied to the glass transition temperatures of polyarylethersulphones. A general equation is reported that calculates the glass transition temperatures with acceptable accuracy (correlation coefficients of between 90-67%, indicating an error of 10-30% with regard to experimentally determined values) for a series of 42 reported polyarylethersulphones. This method is quite simple in assumption and relies on a relatively small number of parameters associated with the structural unit of the polymer: the number of rotatable bonds, the dipole moment, the heat of formation, the HOMO eigenvalue, the molar mass and molar volume. For smaller subsets of the main group (based on families of derivatives containing different substituents) the model can be simplified further to an equation that uses the volume of the substituents as the principal variable.
doi_str_mv 10.1371/journal.pone.0038424
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326187830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083307</galeid><doaj_id>oai_doaj_org_article_fb1b9d7f31bf482abae43cba6264521a</doaj_id><sourcerecordid>A477083307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fdecbede1aec0568c707efd7739e3d9319be320d25d4f417dc6c0197abddb1273</originalsourceid><addsrcrecordid>eNqNkltv1DAQhSMEoqXwDxBEQkLwsIsvSZy8IFUVl5UqtbSUV8uxJ1mvnDjYDqL_HodNqw3qA8pDIvubM5kzJ0leYrTGlOEPOzu6Xpj1YHtYI0TLjGSPkmNcUbIqCKKPD76Pkmfe7xDKaVkUT5MjQhiuyjI7Tm4uHSgtg-7btDXC-zQ40XsdtO3TAN0AToTRgU9tkw7W3Ap3ayBswfnRDNvY26ejn6q_XV9epV28sso_T540wnh4Mb9PkpvPn76ffV2dX3zZnJ2er2RRkbBqFMgaFGABEuVFKRli0CjGaAVUVRRXNVCCFMlV1mSYKVlIhCsmaqVqTBg9SV7vdQdjPZ8d8RxTUuCSlRRFYrMnlBU7PjjdxQG4FZr_PbCu5cIFLQ3wpsZ1pVhDcd1kJRG1gIzKWhSkyHKCRdT6OHcb6w6UhD56ZRaiy5teb3lrf3FKWYFzEgXezQLO_hzBB95pL8EY0YMd438jEtcSBy0i-uYf9OHpZqoVcQDdNzb2lZMoP80YQyWlaHJp_QAVHwWdlnGFjY7ni4L3i4LIBPgdWjF6zzfXV__PXvxYsm8P2C0IE7bemnEKm1-C2R6UznrvoLk3GSM-pf_ODT6ln8_pj2WvDhd0X3QXd_oHnOsB1A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326187830</pqid></control><display><type>article</type><title>Predicting glass transition temperatures of polyarylethersulphones using QSPR methods</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hamerton, Ian ; Howlin, Brendan J ; Kamyszek, Grzegorz</creator><contributor>Chen, Xiaoyuan</contributor><creatorcontrib>Hamerton, Ian ; Howlin, Brendan J ; Kamyszek, Grzegorz ; Chen, Xiaoyuan</creatorcontrib><description>The technique of Quantitative Structure Property Relationships has been applied to the glass transition temperatures of polyarylethersulphones. A general equation is reported that calculates the glass transition temperatures with acceptable accuracy (correlation coefficients of between 90-67%, indicating an error of 10-30% with regard to experimentally determined values) for a series of 42 reported polyarylethersulphones. This method is quite simple in assumption and relies on a relatively small number of parameters associated with the structural unit of the polymer: the number of rotatable bonds, the dipole moment, the heat of formation, the HOMO eigenvalue, the molar mass and molar volume. For smaller subsets of the main group (based on families of derivatives containing different substituents) the model can be simplified further to an equation that uses the volume of the substituents as the principal variable.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0038424</identifier><identifier>PMID: 22719884</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Chemistry ; Correlation coefficient ; Correlation coefficients ; Dipole moments ; Glass ; Glass transition temperature ; Heat of formation ; Materials Science ; Mechanical properties ; Methods ; Molar volume ; Molecular weight ; Performance evaluation ; Polymer blends ; Polymers ; Quantitative Structure-Activity Relationship ; Temperature ; Transition temperatures ; Weather forecasting</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e38424-e38424</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Howlin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Howlin et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fdecbede1aec0568c707efd7739e3d9319be320d25d4f417dc6c0197abddb1273</citedby><cites>FETCH-LOGICAL-c692t-fdecbede1aec0568c707efd7739e3d9319be320d25d4f417dc6c0197abddb1273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376152/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376152/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22719884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Xiaoyuan</contributor><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Howlin, Brendan J</creatorcontrib><creatorcontrib>Kamyszek, Grzegorz</creatorcontrib><title>Predicting glass transition temperatures of polyarylethersulphones using QSPR methods</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The technique of Quantitative Structure Property Relationships has been applied to the glass transition temperatures of polyarylethersulphones. A general equation is reported that calculates the glass transition temperatures with acceptable accuracy (correlation coefficients of between 90-67%, indicating an error of 10-30% with regard to experimentally determined values) for a series of 42 reported polyarylethersulphones. This method is quite simple in assumption and relies on a relatively small number of parameters associated with the structural unit of the polymer: the number of rotatable bonds, the dipole moment, the heat of formation, the HOMO eigenvalue, the molar mass and molar volume. For smaller subsets of the main group (based on families of derivatives containing different substituents) the model can be simplified further to an equation that uses the volume of the substituents as the principal variable.</description><subject>Analysis</subject><subject>Chemistry</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dipole moments</subject><subject>Glass</subject><subject>Glass transition temperature</subject><subject>Heat of formation</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Molar volume</subject><subject>Molecular weight</subject><subject>Performance evaluation</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Temperature</subject><subject>Transition temperatures</subject><subject>Weather forecasting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltv1DAQhSMEoqXwDxBEQkLwsIsvSZy8IFUVl5UqtbSUV8uxJ1mvnDjYDqL_HodNqw3qA8pDIvubM5kzJ0leYrTGlOEPOzu6Xpj1YHtYI0TLjGSPkmNcUbIqCKKPD76Pkmfe7xDKaVkUT5MjQhiuyjI7Tm4uHSgtg-7btDXC-zQ40XsdtO3TAN0AToTRgU9tkw7W3Ap3ayBswfnRDNvY26ejn6q_XV9epV28sso_T540wnh4Mb9PkpvPn76ffV2dX3zZnJ2er2RRkbBqFMgaFGABEuVFKRli0CjGaAVUVRRXNVCCFMlV1mSYKVlIhCsmaqVqTBg9SV7vdQdjPZ8d8RxTUuCSlRRFYrMnlBU7PjjdxQG4FZr_PbCu5cIFLQ3wpsZ1pVhDcd1kJRG1gIzKWhSkyHKCRdT6OHcb6w6UhD56ZRaiy5teb3lrf3FKWYFzEgXezQLO_hzBB95pL8EY0YMd438jEtcSBy0i-uYf9OHpZqoVcQDdNzb2lZMoP80YQyWlaHJp_QAVHwWdlnGFjY7ni4L3i4LIBPgdWjF6zzfXV__PXvxYsm8P2C0IE7bemnEKm1-C2R6UznrvoLk3GSM-pf_ODT6ln8_pj2WvDhd0X3QXd_oHnOsB1A</recordid><startdate>20120615</startdate><enddate>20120615</enddate><creator>Hamerton, Ian</creator><creator>Howlin, Brendan J</creator><creator>Kamyszek, Grzegorz</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120615</creationdate><title>Predicting glass transition temperatures of polyarylethersulphones using QSPR methods</title><author>Hamerton, Ian ; Howlin, Brendan J ; Kamyszek, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fdecbede1aec0568c707efd7739e3d9319be320d25d4f417dc6c0197abddb1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Chemistry</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dipole moments</topic><topic>Glass</topic><topic>Glass transition temperature</topic><topic>Heat of formation</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Molar volume</topic><topic>Molecular weight</topic><topic>Performance evaluation</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Temperature</topic><topic>Transition temperatures</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Howlin, Brendan J</creatorcontrib><creatorcontrib>Kamyszek, Grzegorz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamerton, Ian</au><au>Howlin, Brendan J</au><au>Kamyszek, Grzegorz</au><au>Chen, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting glass transition temperatures of polyarylethersulphones using QSPR methods</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-15</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e38424</spage><epage>e38424</epage><pages>e38424-e38424</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The technique of Quantitative Structure Property Relationships has been applied to the glass transition temperatures of polyarylethersulphones. A general equation is reported that calculates the glass transition temperatures with acceptable accuracy (correlation coefficients of between 90-67%, indicating an error of 10-30% with regard to experimentally determined values) for a series of 42 reported polyarylethersulphones. This method is quite simple in assumption and relies on a relatively small number of parameters associated with the structural unit of the polymer: the number of rotatable bonds, the dipole moment, the heat of formation, the HOMO eigenvalue, the molar mass and molar volume. For smaller subsets of the main group (based on families of derivatives containing different substituents) the model can be simplified further to an equation that uses the volume of the substituents as the principal variable.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22719884</pmid><doi>10.1371/journal.pone.0038424</doi><tpages>e38424</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e38424-e38424
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326187830
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Chemistry
Correlation coefficient
Correlation coefficients
Dipole moments
Glass
Glass transition temperature
Heat of formation
Materials Science
Mechanical properties
Methods
Molar volume
Molecular weight
Performance evaluation
Polymer blends
Polymers
Quantitative Structure-Activity Relationship
Temperature
Transition temperatures
Weather forecasting
title Predicting glass transition temperatures of polyarylethersulphones using QSPR methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20glass%20transition%20temperatures%20of%20polyarylethersulphones%20using%20QSPR%20methods&rft.jtitle=PloS%20one&rft.au=Hamerton,%20Ian&rft.date=2012-06-15&rft.volume=7&rft.issue=6&rft.spage=e38424&rft.epage=e38424&rft.pages=e38424-e38424&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0038424&rft_dat=%3Cgale_plos_%3EA477083307%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326187830&rft_id=info:pmid/22719884&rft_galeid=A477083307&rft_doaj_id=oai_doaj_org_article_fb1b9d7f31bf482abae43cba6264521a&rfr_iscdi=true