NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells

Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-07, Vol.7 (7), p.e42170-e42170
Hauptverfasser: Mercier, Blandine C, Ventre, Erwan, Fogeron, Marie-Laure, Debaud, Anne-Laure, Tomkowiak, Martine, Marvel, Jacqueline, Bonnefoy, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e42170
container_issue 7
container_start_page e42170
container_title PloS one
container_volume 7
creator Mercier, Blandine C
Ventre, Erwan
Fogeron, Marie-Laure
Debaud, Anne-Laure
Tomkowiak, Martine
Marvel, Jacqueline
Bonnefoy, Nathalie
description Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.
doi_str_mv 10.1371/journal.pone.0042170
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325527332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477017128</galeid><doaj_id>oai_doaj_org_article_ba3539a8b1a24ffd8782d7946bbd0cca</doaj_id><sourcerecordid>A477017128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e35e625dc70e1c1c8d65503c48b9cfed47d1494ca807923caf55376a978b4c1e3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eLP2LlBmjo-KlVUGgUuLcc5aT2lcbGdAf8ed82mBu0C-cKW_Zz32K_fLHuO0RRTgd9dud53up3uXAdThBjBAj3ITnFJyaQgiD48Wp9kT0K4QohTWRSPsxNCJJOC4dPsx5flBc6NczvwOkLIf9m4yVeLS5JHl0O30Z2BfJUbaNvcg4FddH6yhdomus61ifZaR-u63Hb57EIOaHiaPWp0G-DZMJ9l3z5-WM0-TxbLT_PZ-WJiipLECVAOBeG1EQiwwUbWBeeIGiar0jRQM1FjVjKjJRIloUY3nFNR6FLIihkM9Cx7edDdtS6owZOgMCWcE0EpScT8QNROX6mdt1vt_yinrbrZcH6ttI_WtKAqTTkttaywJqxpaikkqUXJiqqqkTE6ab0fuvVV8sBAF71uR6Ljk85u1NpdK8qQQCVOAm8GAe9-9hCi2tqwN0x34Pp0b0QRR4TcoK_-Qe9_3UCtdXqA7RqX-pq9qDpnQiAsMJGJmt5DpVHD1poUoMam_VHB21FBYiL8jmvdh6DmXy__n11-H7Ovj9gN6DZugmv7fYLCGGQH0HgXgofmzmSM1D7_t26off7VkP9U9uL4g-6KbgNP_wJDk_25</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325527332</pqid></control><display><type>article</type><title>NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mercier, Blandine C ; Ventre, Erwan ; Fogeron, Marie-Laure ; Debaud, Anne-Laure ; Tomkowiak, Martine ; Marvel, Jacqueline ; Bonnefoy, Nathalie</creator><contributor>Fritz, Jörg Hermann</contributor><creatorcontrib>Mercier, Blandine C ; Ventre, Erwan ; Fogeron, Marie-Laure ; Debaud, Anne-Laure ; Tomkowiak, Martine ; Marvel, Jacqueline ; Bonnefoy, Nathalie ; Fritz, Jörg Hermann</creatorcontrib><description>Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0042170</identifier><identifier>PMID: 22848741</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigens ; Arthritis ; Biology ; CD8 antigen ; CD8-Positive T-Lymphocytes - cytology ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell activation ; Cell Proliferation ; Cytokines ; Cytotoxicity ; Damage detection ; Dendritic cells ; Effector cells ; Gene Expression Regulation ; Health aspects ; Heat shock proteins ; Humans ; Immune system ; Inflammation ; Innate immunity ; JNK Mitogen-Activated Protein Kinases - metabolism ; JNK protein ; Ligands ; Lymphocytes ; Lymphocytes T ; MAP Kinase Signaling System ; Mice ; Mice, Inbred C57BL ; Microorganisms ; NF-kappa B - metabolism ; NF-κB protein ; Nod1 protein ; Nod1 Signaling Adaptor Protein - metabolism ; Nuclear weapons ; p38 Mitogen-Activated Protein Kinases - metabolism ; Pattern recognition ; Pattern recognition receptors ; Proteins ; Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism ; Receptors ; Receptors, Antigen, T-Cell - metabolism ; Signal transduction ; Signaling ; Stimulation ; T cell receptors ; T cells ; T-cell receptor ; TLR2 protein ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e42170-e42170</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Mercier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Mercier et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e35e625dc70e1c1c8d65503c48b9cfed47d1494ca807923caf55376a978b4c1e3</citedby><cites>FETCH-LOGICAL-c692t-e35e625dc70e1c1c8d65503c48b9cfed47d1494ca807923caf55376a978b4c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22848741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fritz, Jörg Hermann</contributor><creatorcontrib>Mercier, Blandine C</creatorcontrib><creatorcontrib>Ventre, Erwan</creatorcontrib><creatorcontrib>Fogeron, Marie-Laure</creatorcontrib><creatorcontrib>Debaud, Anne-Laure</creatorcontrib><creatorcontrib>Tomkowiak, Martine</creatorcontrib><creatorcontrib>Marvel, Jacqueline</creatorcontrib><creatorcontrib>Bonnefoy, Nathalie</creatorcontrib><title>NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.</description><subject>Animals</subject><subject>Antigens</subject><subject>Arthritis</subject><subject>Biology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - cytology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell activation</subject><subject>Cell Proliferation</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Damage detection</subject><subject>Dendritic cells</subject><subject>Effector cells</subject><subject>Gene Expression Regulation</subject><subject>Health aspects</subject><subject>Heat shock proteins</subject><subject>Humans</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>JNK protein</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>MAP Kinase Signaling System</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microorganisms</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nod1 protein</subject><subject>Nod1 Signaling Adaptor Protein - metabolism</subject><subject>Nuclear weapons</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Pattern recognition</subject><subject>Pattern recognition receptors</subject><subject>Proteins</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</subject><subject>Receptors</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stimulation</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><subject>TLR2 protein</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eLP2LlBmjo-KlVUGgUuLcc5aT2lcbGdAf8ed82mBu0C-cKW_Zz32K_fLHuO0RRTgd9dud53up3uXAdThBjBAj3ITnFJyaQgiD48Wp9kT0K4QohTWRSPsxNCJJOC4dPsx5flBc6NczvwOkLIf9m4yVeLS5JHl0O30Z2BfJUbaNvcg4FddH6yhdomus61ifZaR-u63Hb57EIOaHiaPWp0G-DZMJ9l3z5-WM0-TxbLT_PZ-WJiipLECVAOBeG1EQiwwUbWBeeIGiar0jRQM1FjVjKjJRIloUY3nFNR6FLIihkM9Cx7edDdtS6owZOgMCWcE0EpScT8QNROX6mdt1vt_yinrbrZcH6ttI_WtKAqTTkttaywJqxpaikkqUXJiqqqkTE6ab0fuvVV8sBAF71uR6Ljk85u1NpdK8qQQCVOAm8GAe9-9hCi2tqwN0x34Pp0b0QRR4TcoK_-Qe9_3UCtdXqA7RqX-pq9qDpnQiAsMJGJmt5DpVHD1poUoMam_VHB21FBYiL8jmvdh6DmXy__n11-H7Ovj9gN6DZugmv7fYLCGGQH0HgXgofmzmSM1D7_t26off7VkP9U9uL4g-6KbgNP_wJDk_25</recordid><startdate>20120727</startdate><enddate>20120727</enddate><creator>Mercier, Blandine C</creator><creator>Ventre, Erwan</creator><creator>Fogeron, Marie-Laure</creator><creator>Debaud, Anne-Laure</creator><creator>Tomkowiak, Martine</creator><creator>Marvel, Jacqueline</creator><creator>Bonnefoy, Nathalie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120727</creationdate><title>NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells</title><author>Mercier, Blandine C ; Ventre, Erwan ; Fogeron, Marie-Laure ; Debaud, Anne-Laure ; Tomkowiak, Martine ; Marvel, Jacqueline ; Bonnefoy, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e35e625dc70e1c1c8d65503c48b9cfed47d1494ca807923caf55376a978b4c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Arthritis</topic><topic>Biology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - cytology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell activation</topic><topic>Cell Proliferation</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Damage detection</topic><topic>Dendritic cells</topic><topic>Effector cells</topic><topic>Gene Expression Regulation</topic><topic>Health aspects</topic><topic>Heat shock proteins</topic><topic>Humans</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>JNK protein</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>MAP Kinase Signaling System</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microorganisms</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nod1 protein</topic><topic>Nod1 Signaling Adaptor Protein - metabolism</topic><topic>Nuclear weapons</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Pattern recognition</topic><topic>Pattern recognition receptors</topic><topic>Proteins</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</topic><topic>Receptors</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stimulation</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><topic>TLR2 protein</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mercier, Blandine C</creatorcontrib><creatorcontrib>Ventre, Erwan</creatorcontrib><creatorcontrib>Fogeron, Marie-Laure</creatorcontrib><creatorcontrib>Debaud, Anne-Laure</creatorcontrib><creatorcontrib>Tomkowiak, Martine</creatorcontrib><creatorcontrib>Marvel, Jacqueline</creatorcontrib><creatorcontrib>Bonnefoy, Nathalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mercier, Blandine C</au><au>Ventre, Erwan</au><au>Fogeron, Marie-Laure</au><au>Debaud, Anne-Laure</au><au>Tomkowiak, Martine</au><au>Marvel, Jacqueline</au><au>Bonnefoy, Nathalie</au><au>Fritz, Jörg Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-27</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e42170</spage><epage>e42170</epage><pages>e42170-e42170</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22848741</pmid><doi>10.1371/journal.pone.0042170</doi><tpages>e42170</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-07, Vol.7 (7), p.e42170-e42170
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325527332
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antigens
Arthritis
Biology
CD8 antigen
CD8-Positive T-Lymphocytes - cytology
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell activation
Cell Proliferation
Cytokines
Cytotoxicity
Damage detection
Dendritic cells
Effector cells
Gene Expression Regulation
Health aspects
Heat shock proteins
Humans
Immune system
Inflammation
Innate immunity
JNK Mitogen-Activated Protein Kinases - metabolism
JNK protein
Ligands
Lymphocytes
Lymphocytes T
MAP Kinase Signaling System
Mice
Mice, Inbred C57BL
Microorganisms
NF-kappa B - metabolism
NF-κB protein
Nod1 protein
Nod1 Signaling Adaptor Protein - metabolism
Nuclear weapons
p38 Mitogen-Activated Protein Kinases - metabolism
Pattern recognition
Pattern recognition receptors
Proteins
Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism
Receptors
Receptors, Antigen, T-Cell - metabolism
Signal transduction
Signaling
Stimulation
T cell receptors
T cells
T-cell receptor
TLR2 protein
Toll-Like Receptor 2 - metabolism
Toll-like receptors
title NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOD1%20cooperates%20with%20TLR2%20to%20enhance%20T%20cell%20receptor-mediated%20activation%20in%20CD8%20T%20cells&rft.jtitle=PloS%20one&rft.au=Mercier,%20Blandine%20C&rft.date=2012-07-27&rft.volume=7&rft.issue=7&rft.spage=e42170&rft.epage=e42170&rft.pages=e42170-e42170&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0042170&rft_dat=%3Cgale_plos_%3EA477017128%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325527332&rft_id=info:pmid/22848741&rft_galeid=A477017128&rft_doaj_id=oai_doaj_org_article_ba3539a8b1a24ffd8782d7946bbd0cca&rfr_iscdi=true