Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone

Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-07, Vol.7 (7), p.e41914
Hauptverfasser: Nagel, Jutta M, Geiger, Brenda M, Karagiannis, Apostolos K A, Gras-Miralles, Beatriz, Horst, David, Najarian, Robert M, Ziogas, Dimitrios C, Chen, Xinhua, Kokkotou, Efi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e41914
container_title PloS one
container_volume 7
creator Nagel, Jutta M
Geiger, Brenda M
Karagiannis, Apostolos K A
Gras-Miralles, Beatriz
Horst, David
Najarian, Robert M
Ziogas, Dimitrios C
Chen, Xinhua
Kokkotou, Efi
description Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.
doi_str_mv 10.1371/journal.pone.0041914
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325521361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498244877</galeid><doaj_id>oai_doaj_org_article_f3bdfd32b37245a599e0fbfad3cca238</doaj_id><sourcerecordid>A498244877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f3d32b93727fe7388fe6f2ed1592665bfa00de65c4cca3a37ef454135401122a3</originalsourceid><addsrcrecordid>eNqNkt9v0zAQxyMEYmPwHyCohITgocW_k7wgVRVslSYNDcar5Trn1CWxOztB8N_j0Gxq0B5QHhydP_e9750vy15itMA0xx92vg9ONYu9d7BAiOESs0fZKS4pmQuC6OOj_5PsWYw7hDgthHianRBSsEJwcZrdXEPVa6hm1nUQO5sUZ13f-mBrcBBtTBez5ZdVm47Wapg1Sv-wrp610Chn3Vx7p8F1QXVDdOtDm_w8z54Y1UR4MZ5n2c3nT99WF_PLq_P1ank516Ik3dzQipJNSXOSG8hpURgQhkCFeUmE4BujEKpAcM20VlTRHAzjDFPOEMaEKHqWvT7o7hsf5TiRKDElnBNMBU7E-kBUXu3kPthWhd_SKyv_BnyopQqd1Q1IQzeVGQwlP4wrXpaATPJQ0VSd0CJpfRyr9ZsWqkPbzUR0euPsVtb-p6QM5YgPZt6NAsHf9mncsrVRQ5MmCb5PvhFFHBGei4S--Qd9uLuRqlVqwDrjU109iMolKwvCWJHniVo8QKWvgvSk6bmMTfFJwvtJQmI6-NXVqo9Rrr9e_z979X3Kvj1it6Cabht903fWuzgF2QHUwccYwNwPGSM5bP_dNOSw_XLc_pT26viB7pPu1p3-AXGrAAE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325521361</pqid></control><display><type>article</type><title>Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nagel, Jutta M ; Geiger, Brenda M ; Karagiannis, Apostolos K A ; Gras-Miralles, Beatriz ; Horst, David ; Najarian, Robert M ; Ziogas, Dimitrios C ; Chen, Xinhua ; Kokkotou, Efi</creator><contributor>Plateroti, Michelina</contributor><creatorcontrib>Nagel, Jutta M ; Geiger, Brenda M ; Karagiannis, Apostolos K A ; Gras-Miralles, Beatriz ; Horst, David ; Najarian, Robert M ; Ziogas, Dimitrios C ; Chen, Xinhua ; Kokkotou, Efi ; Plateroti, Michelina</creatorcontrib><description>Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0041914</identifier><identifier>PMID: 22848656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenocarcinoma ; Adenocarcinoma - chemically induced ; Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; Adenoma - chemically induced ; Adenoma - metabolism ; Adenoma - pathology ; Animals ; Antibodies ; Apoptosis ; Apoptosis - drug effects ; Appetite ; beta Catenin - metabolism ; Biology ; Caco-2 Cells ; Cancer ; Cancer research ; Cell proliferation ; Cell survival ; Cell Survival - drug effects ; Colitis ; Colon ; Colon cancer ; Colonic Neoplasms - chemically induced ; Colonic Neoplasms - metabolism ; Colonic Neoplasms - pathology ; Colorectal cancer ; Colorectal carcinoma ; Cytokines ; Dextran ; Dextran Sulfate - adverse effects ; Dextrans ; Disease Progression ; Energy balance ; Epithelial cells ; Evolutionary conservation ; Female ; Gastroenterology ; Gastrointestinal diseases ; Gene Expression Regulation, Neoplastic - drug effects ; Health aspects ; Health risks ; Hormones ; Humans ; Hypothalamic Hormones - deficiency ; Hypothalamus ; Inflammation ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inhibition ; Insulin ; Insulin-like growth factors ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - pathology ; Intestinal Neoplasms - chemically induced ; Intestinal Neoplasms - metabolism ; Intestinal Neoplasms - pathology ; Intestine ; Kinases ; Laboratory animals ; Male ; Medical schools ; Medical treatment ; Medicine ; Melanin ; Melanin-concentrating hormone ; Melanins - deficiency ; Mice ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - metabolism ; Mutation ; Pituitary Hormones - deficiency ; Receptors, Somatostatin - metabolism ; Risk reduction ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; Small intestine ; Sodium ; Sodium sulfate ; Sodium sulfates ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism ; Survival ; Tumorigenesis ; Tumors ; Wnt protein ; Wnt Proteins - metabolism ; β-Catenin</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e41914</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Nagel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Nagel et al 2012 Nagel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f3d32b93727fe7388fe6f2ed1592665bfa00de65c4cca3a37ef454135401122a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407051/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22848656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Plateroti, Michelina</contributor><creatorcontrib>Nagel, Jutta M</creatorcontrib><creatorcontrib>Geiger, Brenda M</creatorcontrib><creatorcontrib>Karagiannis, Apostolos K A</creatorcontrib><creatorcontrib>Gras-Miralles, Beatriz</creatorcontrib><creatorcontrib>Horst, David</creatorcontrib><creatorcontrib>Najarian, Robert M</creatorcontrib><creatorcontrib>Ziogas, Dimitrios C</creatorcontrib><creatorcontrib>Chen, Xinhua</creatorcontrib><creatorcontrib>Kokkotou, Efi</creatorcontrib><title>Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - chemically induced</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenoma - chemically induced</subject><subject>Adenoma - metabolism</subject><subject>Adenoma - pathology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Appetite</subject><subject>beta Catenin - metabolism</subject><subject>Biology</subject><subject>Caco-2 Cells</subject><subject>Cancer</subject><subject>Cancer research</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Colitis</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - chemically induced</subject><subject>Colonic Neoplasms - metabolism</subject><subject>Colonic Neoplasms - pathology</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Cytokines</subject><subject>Dextran</subject><subject>Dextran Sulfate - adverse effects</subject><subject>Dextrans</subject><subject>Disease Progression</subject><subject>Energy balance</subject><subject>Epithelial cells</subject><subject>Evolutionary conservation</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Gastrointestinal diseases</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hypothalamic Hormones - deficiency</subject><subject>Hypothalamus</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin-like growth factors</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestinal Neoplasms - chemically induced</subject><subject>Intestinal Neoplasms - metabolism</subject><subject>Intestinal Neoplasms - pathology</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical schools</subject><subject>Medical treatment</subject><subject>Medicine</subject><subject>Melanin</subject><subject>Melanin-concentrating hormone</subject><subject>Melanins - deficiency</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Mutation</subject><subject>Pituitary Hormones - deficiency</subject><subject>Receptors, Somatostatin - metabolism</subject><subject>Risk reduction</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Small intestine</subject><subject>Sodium</subject><subject>Sodium sulfate</subject><subject>Sodium sulfates</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Survival</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>Wnt Proteins - metabolism</subject><subject>β-Catenin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt9v0zAQxyMEYmPwHyCohITgocW_k7wgVRVslSYNDcar5Trn1CWxOztB8N_j0Gxq0B5QHhydP_e9750vy15itMA0xx92vg9ONYu9d7BAiOESs0fZKS4pmQuC6OOj_5PsWYw7hDgthHianRBSsEJwcZrdXEPVa6hm1nUQO5sUZ13f-mBrcBBtTBez5ZdVm47Wapg1Sv-wrp610Chn3Vx7p8F1QXVDdOtDm_w8z54Y1UR4MZ5n2c3nT99WF_PLq_P1ank516Ik3dzQipJNSXOSG8hpURgQhkCFeUmE4BujEKpAcM20VlTRHAzjDFPOEMaEKHqWvT7o7hsf5TiRKDElnBNMBU7E-kBUXu3kPthWhd_SKyv_BnyopQqd1Q1IQzeVGQwlP4wrXpaATPJQ0VSd0CJpfRyr9ZsWqkPbzUR0euPsVtb-p6QM5YgPZt6NAsHf9mncsrVRQ5MmCb5PvhFFHBGei4S--Qd9uLuRqlVqwDrjU109iMolKwvCWJHniVo8QKWvgvSk6bmMTfFJwvtJQmI6-NXVqo9Rrr9e_z979X3Kvj1it6Cabht903fWuzgF2QHUwccYwNwPGSM5bP_dNOSw_XLc_pT26viB7pPu1p3-AXGrAAE</recordid><startdate>20120727</startdate><enddate>20120727</enddate><creator>Nagel, Jutta M</creator><creator>Geiger, Brenda M</creator><creator>Karagiannis, Apostolos K A</creator><creator>Gras-Miralles, Beatriz</creator><creator>Horst, David</creator><creator>Najarian, Robert M</creator><creator>Ziogas, Dimitrios C</creator><creator>Chen, Xinhua</creator><creator>Kokkotou, Efi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120727</creationdate><title>Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone</title><author>Nagel, Jutta M ; Geiger, Brenda M ; Karagiannis, Apostolos K A ; Gras-Miralles, Beatriz ; Horst, David ; Najarian, Robert M ; Ziogas, Dimitrios C ; Chen, Xinhua ; Kokkotou, Efi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f3d32b93727fe7388fe6f2ed1592665bfa00de65c4cca3a37ef454135401122a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - chemically induced</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenoma - chemically induced</topic><topic>Adenoma - metabolism</topic><topic>Adenoma - pathology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Appetite</topic><topic>beta Catenin - metabolism</topic><topic>Biology</topic><topic>Caco-2 Cells</topic><topic>Cancer</topic><topic>Cancer research</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Colitis</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - chemically induced</topic><topic>Colonic Neoplasms - metabolism</topic><topic>Colonic Neoplasms - pathology</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Cytokines</topic><topic>Dextran</topic><topic>Dextran Sulfate - adverse effects</topic><topic>Dextrans</topic><topic>Disease Progression</topic><topic>Energy balance</topic><topic>Epithelial cells</topic><topic>Evolutionary conservation</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Gastrointestinal diseases</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hypothalamic Hormones - deficiency</topic><topic>Hypothalamus</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin-like growth factors</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestinal Neoplasms - chemically induced</topic><topic>Intestinal Neoplasms - metabolism</topic><topic>Intestinal Neoplasms - pathology</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical schools</topic><topic>Medical treatment</topic><topic>Medicine</topic><topic>Melanin</topic><topic>Melanin-concentrating hormone</topic><topic>Melanins - deficiency</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Mutation</topic><topic>Pituitary Hormones - deficiency</topic><topic>Receptors, Somatostatin - metabolism</topic><topic>Risk reduction</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Small intestine</topic><topic>Sodium</topic><topic>Sodium sulfate</topic><topic>Sodium sulfates</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Survival</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>Wnt Proteins - metabolism</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagel, Jutta M</creatorcontrib><creatorcontrib>Geiger, Brenda M</creatorcontrib><creatorcontrib>Karagiannis, Apostolos K A</creatorcontrib><creatorcontrib>Gras-Miralles, Beatriz</creatorcontrib><creatorcontrib>Horst, David</creatorcontrib><creatorcontrib>Najarian, Robert M</creatorcontrib><creatorcontrib>Ziogas, Dimitrios C</creatorcontrib><creatorcontrib>Chen, Xinhua</creatorcontrib><creatorcontrib>Kokkotou, Efi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagel, Jutta M</au><au>Geiger, Brenda M</au><au>Karagiannis, Apostolos K A</au><au>Gras-Miralles, Beatriz</au><au>Horst, David</au><au>Najarian, Robert M</au><au>Ziogas, Dimitrios C</au><au>Chen, Xinhua</au><au>Kokkotou, Efi</au><au>Plateroti, Michelina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-27</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e41914</spage><pages>e41914-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22848656</pmid><doi>10.1371/journal.pone.0041914</doi><tpages>e41914</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-07, Vol.7 (7), p.e41914
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325521361
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenocarcinoma
Adenocarcinoma - chemically induced
Adenocarcinoma - metabolism
Adenocarcinoma - pathology
Adenoma - chemically induced
Adenoma - metabolism
Adenoma - pathology
Animals
Antibodies
Apoptosis
Apoptosis - drug effects
Appetite
beta Catenin - metabolism
Biology
Caco-2 Cells
Cancer
Cancer research
Cell proliferation
Cell survival
Cell Survival - drug effects
Colitis
Colon
Colon cancer
Colonic Neoplasms - chemically induced
Colonic Neoplasms - metabolism
Colonic Neoplasms - pathology
Colorectal cancer
Colorectal carcinoma
Cytokines
Dextran
Dextran Sulfate - adverse effects
Dextrans
Disease Progression
Energy balance
Epithelial cells
Evolutionary conservation
Female
Gastroenterology
Gastrointestinal diseases
Gene Expression Regulation, Neoplastic - drug effects
Health aspects
Health risks
Hormones
Humans
Hypothalamic Hormones - deficiency
Hypothalamus
Inflammation
Inflammatory bowel disease
Inflammatory bowel diseases
Inhibition
Insulin
Insulin-like growth factors
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestinal Mucosa - pathology
Intestinal Neoplasms - chemically induced
Intestinal Neoplasms - metabolism
Intestinal Neoplasms - pathology
Intestine
Kinases
Laboratory animals
Male
Medical schools
Medical treatment
Medicine
Melanin
Melanin-concentrating hormone
Melanins - deficiency
Mice
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
Mutation
Pituitary Hormones - deficiency
Receptors, Somatostatin - metabolism
Risk reduction
Rodents
Signal transduction
Signal Transduction - drug effects
Signaling
Small intestine
Sodium
Sodium sulfate
Sodium sulfates
Stem cells
Stem Cells - drug effects
Stem Cells - metabolism
Survival
Tumorigenesis
Tumors
Wnt protein
Wnt Proteins - metabolism
β-Catenin
title Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20intestinal%20tumorigenesis%20in%20APCmin%20mice%20lacking%20melanin-concentrating%20hormone&rft.jtitle=PloS%20one&rft.au=Nagel,%20Jutta%20M&rft.date=2012-07-27&rft.volume=7&rft.issue=7&rft.spage=e41914&rft.pages=e41914-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0041914&rft_dat=%3Cgale_plos_%3EA498244877%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325521361&rft_id=info:pmid/22848656&rft_galeid=A498244877&rft_doaj_id=oai_doaj_org_article_f3bdfd32b37245a599e0fbfad3cca238&rfr_iscdi=true