Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats

By catabolizing glucose and lipids, mitochondria produce ATPs to meet energy demands. When the number and activity of mitochondria are not sufficient, the human body becomes easily fatigued due to the lack of ATP, thus the control of the quantity and function of mitochondria is important to optimize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-07, Vol.7 (7), p.e40073
Hauptverfasser: Jeong, Hyun Woo, Cho, Si Young, Kim, Shinae, Shin, Eui Seok, Kim, Jae Man, Song, Min Jeong, Park, Pil Joon, Sohn, Jong Hee, Park, Hyon, Seo, Dae-Bang, Kim, Wan Gi, Lee, Sang-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e40073
container_title PloS one
container_volume 7
creator Jeong, Hyun Woo
Cho, Si Young
Kim, Shinae
Shin, Eui Seok
Kim, Jae Man
Song, Min Jeong
Park, Pil Joon
Sohn, Jong Hee
Park, Hyon
Seo, Dae-Bang
Kim, Wan Gi
Lee, Sang-Jun
description By catabolizing glucose and lipids, mitochondria produce ATPs to meet energy demands. When the number and activity of mitochondria are not sufficient, the human body becomes easily fatigued due to the lack of ATP, thus the control of the quantity and function of mitochondria is important to optimize energy balance. By increasing mitochondrial capacity? it may be possible to enhance energy metabolism and improve exercise endurance. Here, through the screening of various functional food ingredients, we found that chitooligosaccharide (COS) is an effective inducer of mitochondrial biogenesis. In rodents, COS increased the mitochondrial content in skeletal muscle and enhanced exercise endurance. In cultured myocytes, the expression of major regulators of mitochondrial biogenesis and key components of mitochondrial electron transfer chain was increased upon COS treatment. COS-mediated induction of mitochondrial biogenesis was achieved in part by the activation of silent information regulator two ortholog 1 (Sirt1) and AMP-activated protein kinase (AMPK). Taken together, our data suggest that COS could act as an exercise mimetic by inducing mitochondrial biogenesis and enhancing exercise endurance through the activation of Sirt1 and AMPK.
doi_str_mv 10.1371/journal.pone.0040073
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325500472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477113448</galeid><doaj_id>oai_doaj_org_article_84262baf81c6460aa384170bc177193b</doaj_id><sourcerecordid>A477113448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8af3dd88cf211804bdbd1d825c96dc5b95e16581f0abde25c7f7bcb64799c4bc3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPlqm94sDIMfgysrrnobTj7aZug0Y5Iu6y_wb5vZ6S4zoCC9SDl53jeHl3Oy7DlGc0wr_HbtRj9AP9-6wcwRYghV9EF2imtKZiVB9OHB_0n2JIQ1QgXlZfk4OyGEI45qcpr9XnY2Otfb1gVQqgNvtcntoEdlQr5Jd6pzg_YW-lxa15rBBBtyGHSClDcQEmZujFc2mNwknYdBmTx23o1tl06Tg4r2GqJ1Q-6a_Mr6iG8NFp-_fEouuYcYnmaPGuiDeTadZ9n39---LT_OLi4_rJaLi5kqaxJnHBqqNeeqIRhzxKSWGmtOClWXWhWyLgwuC44bBFKbVK6aSipZsqquFZOKnmUv977b3gUxZRgEpqQoUogVScRqT2gHa7H1dgP-l3BgxW3B-VaAj1b1RnBGSiKh4ViVrEQAlDNcIalwVaXsZfI6n14b5cZoZYbooT8yPb4ZbCdady0orRlHNBm8mgy8-zmaEP_R8kS1kLqyQ-OSmdrYoMSCpVYwZYwnav4XKn3abKxKU9TYVD8SvDkSJCaam9jCGIJYXX39f_byxzH7-oDtDPSxC64fdxMSjkG2B5V3IXjT3CeHkdgtwV0aYrcEYlqCJHtxmPq96G7q6R--oQRD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325500472</pqid></control><display><type>article</type><title>Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jeong, Hyun Woo ; Cho, Si Young ; Kim, Shinae ; Shin, Eui Seok ; Kim, Jae Man ; Song, Min Jeong ; Park, Pil Joon ; Sohn, Jong Hee ; Park, Hyon ; Seo, Dae-Bang ; Kim, Wan Gi ; Lee, Sang-Jun</creator><creatorcontrib>Jeong, Hyun Woo ; Cho, Si Young ; Kim, Shinae ; Shin, Eui Seok ; Kim, Jae Man ; Song, Min Jeong ; Park, Pil Joon ; Sohn, Jong Hee ; Park, Hyon ; Seo, Dae-Bang ; Kim, Wan Gi ; Lee, Sang-Jun</creatorcontrib><description>By catabolizing glucose and lipids, mitochondria produce ATPs to meet energy demands. When the number and activity of mitochondria are not sufficient, the human body becomes easily fatigued due to the lack of ATP, thus the control of the quantity and function of mitochondria is important to optimize energy balance. By increasing mitochondrial capacity? it may be possible to enhance energy metabolism and improve exercise endurance. Here, through the screening of various functional food ingredients, we found that chitooligosaccharide (COS) is an effective inducer of mitochondrial biogenesis. In rodents, COS increased the mitochondrial content in skeletal muscle and enhanced exercise endurance. In cultured myocytes, the expression of major regulators of mitochondrial biogenesis and key components of mitochondrial electron transfer chain was increased upon COS treatment. COS-mediated induction of mitochondrial biogenesis was achieved in part by the activation of silent information regulator two ortholog 1 (Sirt1) and AMP-activated protein kinase (AMPK). Taken together, our data suggest that COS could act as an exercise mimetic by inducing mitochondrial biogenesis and enhancing exercise endurance through the activation of Sirt1 and AMPK.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040073</identifier><identifier>PMID: 22808092</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; AMP ; AMP-activated protein kinase ; Animals ; Biology ; Biosynthesis ; Cells, Cultured ; Chitosan - analogs &amp; derivatives ; Chitosan - pharmacology ; Durability ; Electron transfer ; Endurance ; Energy balance ; Energy metabolism ; Energy Metabolism - drug effects ; Enzyme Activation - drug effects ; Female ; Functional foods ; Gene Expression - drug effects ; Glucose ; Humans ; Insulin resistance ; Kinases ; Lipid metabolism ; Lipids ; Medicine ; Metabolism ; Mitochondria ; Mitochondria, Muscle - drug effects ; Mitochondria, Muscle - enzymology ; Mitochondrial Turnover - drug effects ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - enzymology ; Muscles ; Myocytes ; Physical Conditioning, Animal ; Physical Endurance - drug effects ; Physiological aspects ; Protein kinases ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Rats ; Rats, Sprague-Dawley ; Regulators ; Rodents ; SIRT1 protein ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Skeletal muscle</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e40073</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Jeong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jeong et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8af3dd88cf211804bdbd1d825c96dc5b95e16581f0abde25c7f7bcb64799c4bc3</citedby><cites>FETCH-LOGICAL-c692t-8af3dd88cf211804bdbd1d825c96dc5b95e16581f0abde25c7f7bcb64799c4bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22808092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Hyun Woo</creatorcontrib><creatorcontrib>Cho, Si Young</creatorcontrib><creatorcontrib>Kim, Shinae</creatorcontrib><creatorcontrib>Shin, Eui Seok</creatorcontrib><creatorcontrib>Kim, Jae Man</creatorcontrib><creatorcontrib>Song, Min Jeong</creatorcontrib><creatorcontrib>Park, Pil Joon</creatorcontrib><creatorcontrib>Sohn, Jong Hee</creatorcontrib><creatorcontrib>Park, Hyon</creatorcontrib><creatorcontrib>Seo, Dae-Bang</creatorcontrib><creatorcontrib>Kim, Wan Gi</creatorcontrib><creatorcontrib>Lee, Sang-Jun</creatorcontrib><title>Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>By catabolizing glucose and lipids, mitochondria produce ATPs to meet energy demands. When the number and activity of mitochondria are not sufficient, the human body becomes easily fatigued due to the lack of ATP, thus the control of the quantity and function of mitochondria is important to optimize energy balance. By increasing mitochondrial capacity? it may be possible to enhance energy metabolism and improve exercise endurance. Here, through the screening of various functional food ingredients, we found that chitooligosaccharide (COS) is an effective inducer of mitochondrial biogenesis. In rodents, COS increased the mitochondrial content in skeletal muscle and enhanced exercise endurance. In cultured myocytes, the expression of major regulators of mitochondrial biogenesis and key components of mitochondrial electron transfer chain was increased upon COS treatment. COS-mediated induction of mitochondrial biogenesis was achieved in part by the activation of silent information regulator two ortholog 1 (Sirt1) and AMP-activated protein kinase (AMPK). Taken together, our data suggest that COS could act as an exercise mimetic by inducing mitochondrial biogenesis and enhancing exercise endurance through the activation of Sirt1 and AMPK.</description><subject>Activation</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>Animals</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Cells, Cultured</subject><subject>Chitosan - analogs &amp; derivatives</subject><subject>Chitosan - pharmacology</subject><subject>Durability</subject><subject>Electron transfer</subject><subject>Endurance</subject><subject>Energy balance</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Enzyme Activation - drug effects</subject><subject>Female</subject><subject>Functional foods</subject><subject>Gene Expression - drug effects</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria, Muscle - drug effects</subject><subject>Mitochondria, Muscle - enzymology</subject><subject>Mitochondrial Turnover - drug effects</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscles</subject><subject>Myocytes</subject><subject>Physical Conditioning, Animal</subject><subject>Physical Endurance - drug effects</subject><subject>Physiological aspects</subject><subject>Protein kinases</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regulators</subject><subject>Rodents</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Skeletal muscle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguDFjPlqm94sDIMfgysrrnobTj7aZug0Y5Iu6y_wb5vZ6S4zoCC9SDl53jeHl3Oy7DlGc0wr_HbtRj9AP9-6wcwRYghV9EF2imtKZiVB9OHB_0n2JIQ1QgXlZfk4OyGEI45qcpr9XnY2Otfb1gVQqgNvtcntoEdlQr5Jd6pzg_YW-lxa15rBBBtyGHSClDcQEmZujFc2mNwknYdBmTx23o1tl06Tg4r2GqJ1Q-6a_Mr6iG8NFp-_fEouuYcYnmaPGuiDeTadZ9n39---LT_OLi4_rJaLi5kqaxJnHBqqNeeqIRhzxKSWGmtOClWXWhWyLgwuC44bBFKbVK6aSipZsqquFZOKnmUv977b3gUxZRgEpqQoUogVScRqT2gHa7H1dgP-l3BgxW3B-VaAj1b1RnBGSiKh4ViVrEQAlDNcIalwVaXsZfI6n14b5cZoZYbooT8yPb4ZbCdady0orRlHNBm8mgy8-zmaEP_R8kS1kLqyQ-OSmdrYoMSCpVYwZYwnav4XKn3abKxKU9TYVD8SvDkSJCaam9jCGIJYXX39f_byxzH7-oDtDPSxC64fdxMSjkG2B5V3IXjT3CeHkdgtwV0aYrcEYlqCJHtxmPq96G7q6R--oQRD</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Jeong, Hyun Woo</creator><creator>Cho, Si Young</creator><creator>Kim, Shinae</creator><creator>Shin, Eui Seok</creator><creator>Kim, Jae Man</creator><creator>Song, Min Jeong</creator><creator>Park, Pil Joon</creator><creator>Sohn, Jong Hee</creator><creator>Park, Hyon</creator><creator>Seo, Dae-Bang</creator><creator>Kim, Wan Gi</creator><creator>Lee, Sang-Jun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120711</creationdate><title>Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats</title><author>Jeong, Hyun Woo ; Cho, Si Young ; Kim, Shinae ; Shin, Eui Seok ; Kim, Jae Man ; Song, Min Jeong ; Park, Pil Joon ; Sohn, Jong Hee ; Park, Hyon ; Seo, Dae-Bang ; Kim, Wan Gi ; Lee, Sang-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8af3dd88cf211804bdbd1d825c96dc5b95e16581f0abde25c7f7bcb64799c4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>Animals</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Cells, Cultured</topic><topic>Chitosan - analogs &amp; derivatives</topic><topic>Chitosan - pharmacology</topic><topic>Durability</topic><topic>Electron transfer</topic><topic>Endurance</topic><topic>Energy balance</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Enzyme Activation - drug effects</topic><topic>Female</topic><topic>Functional foods</topic><topic>Gene Expression - drug effects</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria, Muscle - drug effects</topic><topic>Mitochondria, Muscle - enzymology</topic><topic>Mitochondrial Turnover - drug effects</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscles</topic><topic>Myocytes</topic><topic>Physical Conditioning, Animal</topic><topic>Physical Endurance - drug effects</topic><topic>Physiological aspects</topic><topic>Protein kinases</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regulators</topic><topic>Rodents</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Hyun Woo</creatorcontrib><creatorcontrib>Cho, Si Young</creatorcontrib><creatorcontrib>Kim, Shinae</creatorcontrib><creatorcontrib>Shin, Eui Seok</creatorcontrib><creatorcontrib>Kim, Jae Man</creatorcontrib><creatorcontrib>Song, Min Jeong</creatorcontrib><creatorcontrib>Park, Pil Joon</creatorcontrib><creatorcontrib>Sohn, Jong Hee</creatorcontrib><creatorcontrib>Park, Hyon</creatorcontrib><creatorcontrib>Seo, Dae-Bang</creatorcontrib><creatorcontrib>Kim, Wan Gi</creatorcontrib><creatorcontrib>Lee, Sang-Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Hyun Woo</au><au>Cho, Si Young</au><au>Kim, Shinae</au><au>Shin, Eui Seok</au><au>Kim, Jae Man</au><au>Song, Min Jeong</au><au>Park, Pil Joon</au><au>Sohn, Jong Hee</au><au>Park, Hyon</au><au>Seo, Dae-Bang</au><au>Kim, Wan Gi</au><au>Lee, Sang-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e40073</spage><pages>e40073-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>By catabolizing glucose and lipids, mitochondria produce ATPs to meet energy demands. When the number and activity of mitochondria are not sufficient, the human body becomes easily fatigued due to the lack of ATP, thus the control of the quantity and function of mitochondria is important to optimize energy balance. By increasing mitochondrial capacity? it may be possible to enhance energy metabolism and improve exercise endurance. Here, through the screening of various functional food ingredients, we found that chitooligosaccharide (COS) is an effective inducer of mitochondrial biogenesis. In rodents, COS increased the mitochondrial content in skeletal muscle and enhanced exercise endurance. In cultured myocytes, the expression of major regulators of mitochondrial biogenesis and key components of mitochondrial electron transfer chain was increased upon COS treatment. COS-mediated induction of mitochondrial biogenesis was achieved in part by the activation of silent information regulator two ortholog 1 (Sirt1) and AMP-activated protein kinase (AMPK). Taken together, our data suggest that COS could act as an exercise mimetic by inducing mitochondrial biogenesis and enhancing exercise endurance through the activation of Sirt1 and AMPK.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22808092</pmid><doi>10.1371/journal.pone.0040073</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-07, Vol.7 (7), p.e40073
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325500472
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Activation
AMP
AMP-activated protein kinase
Animals
Biology
Biosynthesis
Cells, Cultured
Chitosan - analogs & derivatives
Chitosan - pharmacology
Durability
Electron transfer
Endurance
Energy balance
Energy metabolism
Energy Metabolism - drug effects
Enzyme Activation - drug effects
Female
Functional foods
Gene Expression - drug effects
Glucose
Humans
Insulin resistance
Kinases
Lipid metabolism
Lipids
Medicine
Metabolism
Mitochondria
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - enzymology
Mitochondrial Turnover - drug effects
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - enzymology
Muscles
Myocytes
Physical Conditioning, Animal
Physical Endurance - drug effects
Physiological aspects
Protein kinases
Protein Kinases - genetics
Protein Kinases - metabolism
Rats
Rats, Sprague-Dawley
Regulators
Rodents
SIRT1 protein
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Skeletal muscle
title Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitooligosaccharide%20induces%20mitochondrial%20biogenesis%20and%20increases%20exercise%20endurance%20through%20the%20activation%20of%20Sirt1%20and%20AMPK%20in%20rats&rft.jtitle=PloS%20one&rft.au=Jeong,%20Hyun%20Woo&rft.date=2012-07-11&rft.volume=7&rft.issue=7&rft.spage=e40073&rft.pages=e40073-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040073&rft_dat=%3Cgale_plos_%3EA477113448%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325500472&rft_id=info:pmid/22808092&rft_galeid=A477113448&rft_doaj_id=oai_doaj_org_article_84262baf81c6460aa384170bc177193b&rfr_iscdi=true