Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spre...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-06, Vol.7 (6), p.e39983-e39983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e39983 |
---|---|
container_issue | 6 |
container_start_page | e39983 |
container_title | PloS one |
container_volume | 7 |
creator | Rossi, Bénédicte Ogden, David Llano, Isabel Tan, Yusuf P Marty, Alain Collin, Thibault |
description | In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity. |
doi_str_mv | 10.1371/journal.pone.0039983 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325036018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477017086</galeid><doaj_id>oai_doaj_org_article_42b12a73fbca40229ed061a451152910</doaj_id><sourcerecordid>A477017086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-49e8d42e2849f72428b3ce00465fd03ee54a86128d707ba7d197ab86763963ed3</originalsourceid><addsrcrecordid>eNqNk8uO0zAUhiMEYoaBN0BgCQnBosW32MkGqSq3SgMjcdtajnPSeuTExU6qmR2PjkMzoxbNAnlh6_g7_7F_-2TZU4LnhEny5tIPodNuvvUdzDFmZVmwe9kpKRmdCYrZ_YP1SfYoxkuMc1YI8TA7oVQKUnJ8mv1eDiFA1yPd1choZ-zQogAxqUaIqPfI-RRG2vR2p3vrO-QbpK98Ko2-fH63SLCBbe9DRLZDNezA-a3t1shAgAqc0wG13oEZxpXT1xAS2EPoYAipyOPsQaNdhCfTfJb9-PD--_LT7Pzi42q5OJ8ZmRf9jJdQ1JwCLXjZSMppUTEDGHORNzVmADnXhSC0qCWWlZY1KaWuCiEFKwWDmp1lz_e6W-ejmsyLijCaYyYwKRKx2hO115dqG2yrw7Xy2qq_AR_WSofeGgeK04pQLVlTGc0xpSXUWBDNc0JyWhKctN5O1Yaqhdokh4N2R6LHO53dqLXfKcYKLihLAq8mgeB_DRB71dpoRjs78EM6N6YclyUlNKEv_kHvvt1ErXW6gO0an-qaUVQtuJSYSFyIRM3voNKoobUm_bTGpvhRwuujhMT0cNWv9RCjWn37-v_sxc9j9uUBuwHt-k30bhh_YDwG-R40wccYoLk1mWA1NsqNG2psFDU1Skp7dvhAt0k3ncH-AENxDig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325036018</pqid></control><display><type>article</type><title>Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rossi, Bénédicte ; Ogden, David ; Llano, Isabel ; Tan, Yusuf P ; Marty, Alain ; Collin, Thibault</creator><creatorcontrib>Rossi, Bénédicte ; Ogden, David ; Llano, Isabel ; Tan, Yusuf P ; Marty, Alain ; Collin, Thibault</creatorcontrib><description>In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039983</identifier><identifier>PMID: 22761940</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Animals ; Axonal plasticity ; Biology ; Brain ; Calcium ; Calcium - metabolism ; Calcium channels ; Calcium channels (voltage-gated) ; Calcium Channels - metabolism ; Calcium imaging ; Calcium Signaling ; Cerebellar plasticity ; Cerebellum ; Cerebellum - cytology ; Cerebellum - metabolism ; Depolarization ; Electric potential ; Electrophysiology ; Experiments ; GABA ; Glutamate ; Glutamic acid receptors (ionotropic) ; Interneurons ; Interneurons - metabolism ; Magnesium ; N-Methyl-D-aspartic acid receptors ; Neurotransmitter release ; Rats ; Rats, Sprague-Dawley ; Receptors ; Receptors, N-Methyl-D-Aspartate - metabolism ; Rodents ; Synaptic plasticity</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39983-e39983</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Rossi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Rossi et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-49e8d42e2849f72428b3ce00465fd03ee54a86128d707ba7d197ab86763963ed3</citedby><cites>FETCH-LOGICAL-c758t-49e8d42e2849f72428b3ce00465fd03ee54a86128d707ba7d197ab86763963ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384623/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384623/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi, Bénédicte</creatorcontrib><creatorcontrib>Ogden, David</creatorcontrib><creatorcontrib>Llano, Isabel</creatorcontrib><creatorcontrib>Tan, Yusuf P</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Collin, Thibault</creatorcontrib><title>Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.</description><subject>Activation</subject><subject>Animals</subject><subject>Axonal plasticity</subject><subject>Biology</subject><subject>Brain</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium imaging</subject><subject>Calcium Signaling</subject><subject>Cerebellar plasticity</subject><subject>Cerebellum</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Depolarization</subject><subject>Electric potential</subject><subject>Electrophysiology</subject><subject>Experiments</subject><subject>GABA</subject><subject>Glutamate</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Interneurons</subject><subject>Interneurons - metabolism</subject><subject>Magnesium</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neurotransmitter release</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Rodents</subject><subject>Synaptic plasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8uO0zAUhiMEYoaBN0BgCQnBosW32MkGqSq3SgMjcdtajnPSeuTExU6qmR2PjkMzoxbNAnlh6_g7_7F_-2TZU4LnhEny5tIPodNuvvUdzDFmZVmwe9kpKRmdCYrZ_YP1SfYoxkuMc1YI8TA7oVQKUnJ8mv1eDiFA1yPd1choZ-zQogAxqUaIqPfI-RRG2vR2p3vrO-QbpK98Ko2-fH63SLCBbe9DRLZDNezA-a3t1shAgAqc0wG13oEZxpXT1xAS2EPoYAipyOPsQaNdhCfTfJb9-PD--_LT7Pzi42q5OJ8ZmRf9jJdQ1JwCLXjZSMppUTEDGHORNzVmADnXhSC0qCWWlZY1KaWuCiEFKwWDmp1lz_e6W-ejmsyLijCaYyYwKRKx2hO115dqG2yrw7Xy2qq_AR_WSofeGgeK04pQLVlTGc0xpSXUWBDNc0JyWhKctN5O1Yaqhdokh4N2R6LHO53dqLXfKcYKLihLAq8mgeB_DRB71dpoRjs78EM6N6YclyUlNKEv_kHvvt1ErXW6gO0an-qaUVQtuJSYSFyIRM3voNKoobUm_bTGpvhRwuujhMT0cNWv9RCjWn37-v_sxc9j9uUBuwHt-k30bhh_YDwG-R40wccYoLk1mWA1NsqNG2psFDU1Skp7dvhAt0k3ncH-AENxDig</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Rossi, Bénédicte</creator><creator>Ogden, David</creator><creator>Llano, Isabel</creator><creator>Tan, Yusuf P</creator><creator>Marty, Alain</creator><creator>Collin, Thibault</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120627</creationdate><title>Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons</title><author>Rossi, Bénédicte ; Ogden, David ; Llano, Isabel ; Tan, Yusuf P ; Marty, Alain ; Collin, Thibault</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-49e8d42e2849f72428b3ce00465fd03ee54a86128d707ba7d197ab86763963ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Axonal plasticity</topic><topic>Biology</topic><topic>Brain</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium imaging</topic><topic>Calcium Signaling</topic><topic>Cerebellar plasticity</topic><topic>Cerebellum</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Depolarization</topic><topic>Electric potential</topic><topic>Electrophysiology</topic><topic>Experiments</topic><topic>GABA</topic><topic>Glutamate</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Interneurons</topic><topic>Interneurons - metabolism</topic><topic>Magnesium</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neurotransmitter release</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Rodents</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Bénédicte</creatorcontrib><creatorcontrib>Ogden, David</creatorcontrib><creatorcontrib>Llano, Isabel</creatorcontrib><creatorcontrib>Tan, Yusuf P</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Collin, Thibault</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, Bénédicte</au><au>Ogden, David</au><au>Llano, Isabel</au><au>Tan, Yusuf P</au><au>Marty, Alain</au><au>Collin, Thibault</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39983</spage><epage>e39983</epage><pages>e39983-e39983</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22761940</pmid><doi>10.1371/journal.pone.0039983</doi><tpages>e39983</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-06, Vol.7 (6), p.e39983-e39983 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325036018 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Activation Animals Axonal plasticity Biology Brain Calcium Calcium - metabolism Calcium channels Calcium channels (voltage-gated) Calcium Channels - metabolism Calcium imaging Calcium Signaling Cerebellar plasticity Cerebellum Cerebellum - cytology Cerebellum - metabolism Depolarization Electric potential Electrophysiology Experiments GABA Glutamate Glutamic acid receptors (ionotropic) Interneurons Interneurons - metabolism Magnesium N-Methyl-D-aspartic acid receptors Neurotransmitter release Rats Rats, Sprague-Dawley Receptors Receptors, N-Methyl-D-Aspartate - metabolism Rodents Synaptic plasticity |
title | Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20and%20calcium%20responses%20to%20local%20activation%20of%20axonal%20NMDA%20receptors%20in%20developing%20cerebellar%20molecular%20layer%20interneurons&rft.jtitle=PloS%20one&rft.au=Rossi,%20B%C3%A9n%C3%A9dicte&rft.date=2012-06-27&rft.volume=7&rft.issue=6&rft.spage=e39983&rft.epage=e39983&rft.pages=e39983-e39983&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039983&rft_dat=%3Cgale_plos_%3EA477017086%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325036018&rft_id=info:pmid/22761940&rft_galeid=A477017086&rft_doaj_id=oai_doaj_org_article_42b12a73fbca40229ed061a451152910&rfr_iscdi=true |