Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease

Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e39242
Hauptverfasser: Papa, Eliseo, Docktor, Michael, Smillie, Christopher, Weber, Sarah, Preheim, Sarah P, Gevers, Dirk, Giannoukos, Georgia, Ciulla, Dawn, Tabbaa, Diana, Ingram, Jay, Schauer, David B, Ward, Doyle V, Korzenik, Joshua R, Xavier, Ramnik J, Bousvaros, Athos, Alm, Eric J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e39242
container_title PloS one
container_volume 7
creator Papa, Eliseo
Docktor, Michael
Smillie, Christopher
Weber, Sarah
Preheim, Sarah P
Gevers, Dirk
Giannoukos, Georgia
Ciulla, Dawn
Tabbaa, Diana
Ingram, Jay
Schauer, David B
Ward, Doyle V
Korzenik, Joshua R
Xavier, Ramnik J
Bousvaros, Athos
Alm, Eric J
description Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.
doi_str_mv 10.1371/journal.pone.0039242
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325028235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004357</galeid><doaj_id>oai_doaj_org_article_dbee976b36a54737ac2c5bf0d90ea952</doaj_id><sourcerecordid>A477004357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5662ff10c2c0fe532664902bd9c35e00d448e948c95ed8157dd1f5851540b82c3</originalsourceid><addsrcrecordid>eNqNktuL1DAUxoso7kX_A9GCIPgwY5pb2xdhWbwMLC54ew1pctpmbJPZJDO7-9-bdbrLFBQkDwnJ73zn8OXLshcFWhakLN6t3dZbOSw3zsISIVJjih9lx0VN8IJjRB4fnI-ykxDWCDFScf40O8K45BXi7Dj79cXZhbE7GcwO8lFuNsZ2uWvz2EPeyRC9MzZCiCb1ykejvGuMizI3Gmw0rYGQq94M2oPNr03sc2PbQY6jjM7f5o27hiHXJoAM8Cx70sohwPNpP81-fPzw_fzz4uLy0-r87GKheI3jgnGO27ZACivUAiOYc1oj3OhaEQYIaUorqGmlaga6KlipddGyihWMoqbCipxmr_a6m8EFMfkUREEwQ7jChCVitSe0k2ux8WaU_lY4acSfC-c7IX00agChG4C65A3hktGSlDKNxZoW6RqBrBlOWu-nbttmBK2SLV4OM9H5izW96NxOEFKVBeVJ4PUk4N3VNln9j5EnqpNpqmSyS2JqNEGJM1qWCFHCykQt_0KlpSH9XUpKa9L9rODtrCAxEW5iJ7chiNW3r__PXv6cs28O2B7kEPvghm00zoY5SPdgSlYIHtoH5wok7oJ-74a4C7qYgp7KXh66_lB0n2zyG-mh-h0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325028235</pqid></control><display><type>article</type><title>Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Papa, Eliseo ; Docktor, Michael ; Smillie, Christopher ; Weber, Sarah ; Preheim, Sarah P ; Gevers, Dirk ; Giannoukos, Georgia ; Ciulla, Dawn ; Tabbaa, Diana ; Ingram, Jay ; Schauer, David B ; Ward, Doyle V ; Korzenik, Joshua R ; Xavier, Ramnik J ; Bousvaros, Athos ; Alm, Eric J</creator><creatorcontrib>Papa, Eliseo ; Docktor, Michael ; Smillie, Christopher ; Weber, Sarah ; Preheim, Sarah P ; Gevers, Dirk ; Giannoukos, Georgia ; Ciulla, Dawn ; Tabbaa, Diana ; Ingram, Jay ; Schauer, David B ; Ward, Doyle V ; Korzenik, Joshua R ; Xavier, Ramnik J ; Bousvaros, Athos ; Alm, Eric J</creatorcontrib><description>Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039242</identifier><identifier>PMID: 22768065</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Adults ; Analytical methods ; Anti-Bacterial Agents - therapeutic use ; Biodiversity ; Bioengineering ; Bioinformatics ; Biology ; Biopsy ; Blood tests ; Child ; Child health ; Child, Preschool ; Children ; Clinical trials ; Cohort Studies ; Colitis, Ulcerative - diagnosis ; Colitis, Ulcerative - microbiology ; Colitis, Ulcerative - pathology ; Colon ; Colonoscopy ; Crohn Disease - diagnosis ; Crohn Disease - microbiology ; Crohn Disease - pathology ; Crohn's disease ; Data analysis ; Demography ; Diagnosis ; Diagnosis, Differential ; Diagnostic software ; Diagnostic systems ; Ecological monitoring ; Ecology ; Endoscopes ; Endoscopy ; Engineering ; Environmental engineering ; Feces - microbiology ; Female ; Gastroenterology ; Gastrointestinal diseases ; Gastrointestinal Tract - microbiology ; Gastrointestinal Tract - pathology ; Gastrointestinal tract diseases ; Genomes ; Hospitals ; Humans ; Identification methods ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - classification ; Inflammatory Bowel Diseases - diagnosis ; Inflammatory Bowel Diseases - drug therapy ; Inflammatory Bowel Diseases - microbiology ; Intestine ; Leukocyte L1 Antigen Complex - metabolism ; Male ; Medical diagnosis ; Medicine ; Metagenome - genetics ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; Patients ; Pediatrics ; Remission Induction ; Reproducibility of Results ; RNA ; rRNA 16S ; Sensitivity ; Severity of Illness Index ; Slime ; Software ; Studies ; Surveys ; Taxa ; Taxonomy ; Ulcerative colitis ; Young Adult ; Young adults</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39242</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Papa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Papa et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5662ff10c2c0fe532664902bd9c35e00d448e948c95ed8157dd1f5851540b82c3</citedby><cites>FETCH-LOGICAL-c692t-5662ff10c2c0fe532664902bd9c35e00d448e948c95ed8157dd1f5851540b82c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22768065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papa, Eliseo</creatorcontrib><creatorcontrib>Docktor, Michael</creatorcontrib><creatorcontrib>Smillie, Christopher</creatorcontrib><creatorcontrib>Weber, Sarah</creatorcontrib><creatorcontrib>Preheim, Sarah P</creatorcontrib><creatorcontrib>Gevers, Dirk</creatorcontrib><creatorcontrib>Giannoukos, Georgia</creatorcontrib><creatorcontrib>Ciulla, Dawn</creatorcontrib><creatorcontrib>Tabbaa, Diana</creatorcontrib><creatorcontrib>Ingram, Jay</creatorcontrib><creatorcontrib>Schauer, David B</creatorcontrib><creatorcontrib>Ward, Doyle V</creatorcontrib><creatorcontrib>Korzenik, Joshua R</creatorcontrib><creatorcontrib>Xavier, Ramnik J</creatorcontrib><creatorcontrib>Bousvaros, Athos</creatorcontrib><creatorcontrib>Alm, Eric J</creatorcontrib><title>Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>Analytical methods</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Biodiversity</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biopsy</subject><subject>Blood tests</subject><subject>Child</subject><subject>Child health</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Clinical trials</subject><subject>Cohort Studies</subject><subject>Colitis, Ulcerative - diagnosis</subject><subject>Colitis, Ulcerative - microbiology</subject><subject>Colitis, Ulcerative - pathology</subject><subject>Colon</subject><subject>Colonoscopy</subject><subject>Crohn Disease - diagnosis</subject><subject>Crohn Disease - microbiology</subject><subject>Crohn Disease - pathology</subject><subject>Crohn's disease</subject><subject>Data analysis</subject><subject>Demography</subject><subject>Diagnosis</subject><subject>Diagnosis, Differential</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Endoscopes</subject><subject>Endoscopy</subject><subject>Engineering</subject><subject>Environmental engineering</subject><subject>Feces - microbiology</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Gastrointestinal diseases</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gastrointestinal Tract - pathology</subject><subject>Gastrointestinal tract diseases</subject><subject>Genomes</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - classification</subject><subject>Inflammatory Bowel Diseases - diagnosis</subject><subject>Inflammatory Bowel Diseases - drug therapy</subject><subject>Inflammatory Bowel Diseases - microbiology</subject><subject>Intestine</subject><subject>Leukocyte L1 Antigen Complex - metabolism</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Metagenome - genetics</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Remission Induction</subject><subject>Reproducibility of Results</subject><subject>RNA</subject><subject>rRNA 16S</subject><subject>Sensitivity</subject><subject>Severity of Illness Index</subject><subject>Slime</subject><subject>Software</subject><subject>Studies</subject><subject>Surveys</subject><subject>Taxa</subject><subject>Taxonomy</subject><subject>Ulcerative colitis</subject><subject>Young Adult</subject><subject>Young adults</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuL1DAUxoso7kX_A9GCIPgwY5pb2xdhWbwMLC54ew1pctpmbJPZJDO7-9-bdbrLFBQkDwnJ73zn8OXLshcFWhakLN6t3dZbOSw3zsISIVJjih9lx0VN8IJjRB4fnI-ykxDWCDFScf40O8K45BXi7Dj79cXZhbE7GcwO8lFuNsZ2uWvz2EPeyRC9MzZCiCb1ykejvGuMizI3Gmw0rYGQq94M2oPNr03sc2PbQY6jjM7f5o27hiHXJoAM8Cx70sohwPNpP81-fPzw_fzz4uLy0-r87GKheI3jgnGO27ZACivUAiOYc1oj3OhaEQYIaUorqGmlaga6KlipddGyihWMoqbCipxmr_a6m8EFMfkUREEwQ7jChCVitSe0k2ux8WaU_lY4acSfC-c7IX00agChG4C65A3hktGSlDKNxZoW6RqBrBlOWu-nbttmBK2SLV4OM9H5izW96NxOEFKVBeVJ4PUk4N3VNln9j5EnqpNpqmSyS2JqNEGJM1qWCFHCykQt_0KlpSH9XUpKa9L9rODtrCAxEW5iJ7chiNW3r__PXv6cs28O2B7kEPvghm00zoY5SPdgSlYIHtoH5wok7oJ-74a4C7qYgp7KXh66_lB0n2zyG-mh-h0</recordid><startdate>20120629</startdate><enddate>20120629</enddate><creator>Papa, Eliseo</creator><creator>Docktor, Michael</creator><creator>Smillie, Christopher</creator><creator>Weber, Sarah</creator><creator>Preheim, Sarah P</creator><creator>Gevers, Dirk</creator><creator>Giannoukos, Georgia</creator><creator>Ciulla, Dawn</creator><creator>Tabbaa, Diana</creator><creator>Ingram, Jay</creator><creator>Schauer, David B</creator><creator>Ward, Doyle V</creator><creator>Korzenik, Joshua R</creator><creator>Xavier, Ramnik J</creator><creator>Bousvaros, Athos</creator><creator>Alm, Eric J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120629</creationdate><title>Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease</title><author>Papa, Eliseo ; Docktor, Michael ; Smillie, Christopher ; Weber, Sarah ; Preheim, Sarah P ; Gevers, Dirk ; Giannoukos, Georgia ; Ciulla, Dawn ; Tabbaa, Diana ; Ingram, Jay ; Schauer, David B ; Ward, Doyle V ; Korzenik, Joshua R ; Xavier, Ramnik J ; Bousvaros, Athos ; Alm, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5662ff10c2c0fe532664902bd9c35e00d448e948c95ed8157dd1f5851540b82c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>Analytical methods</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Biodiversity</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biopsy</topic><topic>Blood tests</topic><topic>Child</topic><topic>Child health</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Clinical trials</topic><topic>Cohort Studies</topic><topic>Colitis, Ulcerative - diagnosis</topic><topic>Colitis, Ulcerative - microbiology</topic><topic>Colitis, Ulcerative - pathology</topic><topic>Colon</topic><topic>Colonoscopy</topic><topic>Crohn Disease - diagnosis</topic><topic>Crohn Disease - microbiology</topic><topic>Crohn Disease - pathology</topic><topic>Crohn's disease</topic><topic>Data analysis</topic><topic>Demography</topic><topic>Diagnosis</topic><topic>Diagnosis, Differential</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Endoscopes</topic><topic>Endoscopy</topic><topic>Engineering</topic><topic>Environmental engineering</topic><topic>Feces - microbiology</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Gastrointestinal diseases</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gastrointestinal Tract - pathology</topic><topic>Gastrointestinal tract diseases</topic><topic>Genomes</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - classification</topic><topic>Inflammatory Bowel Diseases - diagnosis</topic><topic>Inflammatory Bowel Diseases - drug therapy</topic><topic>Inflammatory Bowel Diseases - microbiology</topic><topic>Intestine</topic><topic>Leukocyte L1 Antigen Complex - metabolism</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Metagenome - genetics</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Remission Induction</topic><topic>Reproducibility of Results</topic><topic>RNA</topic><topic>rRNA 16S</topic><topic>Sensitivity</topic><topic>Severity of Illness Index</topic><topic>Slime</topic><topic>Software</topic><topic>Studies</topic><topic>Surveys</topic><topic>Taxa</topic><topic>Taxonomy</topic><topic>Ulcerative colitis</topic><topic>Young Adult</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papa, Eliseo</creatorcontrib><creatorcontrib>Docktor, Michael</creatorcontrib><creatorcontrib>Smillie, Christopher</creatorcontrib><creatorcontrib>Weber, Sarah</creatorcontrib><creatorcontrib>Preheim, Sarah P</creatorcontrib><creatorcontrib>Gevers, Dirk</creatorcontrib><creatorcontrib>Giannoukos, Georgia</creatorcontrib><creatorcontrib>Ciulla, Dawn</creatorcontrib><creatorcontrib>Tabbaa, Diana</creatorcontrib><creatorcontrib>Ingram, Jay</creatorcontrib><creatorcontrib>Schauer, David B</creatorcontrib><creatorcontrib>Ward, Doyle V</creatorcontrib><creatorcontrib>Korzenik, Joshua R</creatorcontrib><creatorcontrib>Xavier, Ramnik J</creatorcontrib><creatorcontrib>Bousvaros, Athos</creatorcontrib><creatorcontrib>Alm, Eric J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papa, Eliseo</au><au>Docktor, Michael</au><au>Smillie, Christopher</au><au>Weber, Sarah</au><au>Preheim, Sarah P</au><au>Gevers, Dirk</au><au>Giannoukos, Georgia</au><au>Ciulla, Dawn</au><au>Tabbaa, Diana</au><au>Ingram, Jay</au><au>Schauer, David B</au><au>Ward, Doyle V</au><au>Korzenik, Joshua R</au><au>Xavier, Ramnik J</au><au>Bousvaros, Athos</au><au>Alm, Eric J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-29</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39242</spage><pages>e39242-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22768065</pmid><doi>10.1371/journal.pone.0039242</doi><tpages>e39242</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e39242
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325028235
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adolescent
Adult
Adults
Analytical methods
Anti-Bacterial Agents - therapeutic use
Biodiversity
Bioengineering
Bioinformatics
Biology
Biopsy
Blood tests
Child
Child health
Child, Preschool
Children
Clinical trials
Cohort Studies
Colitis, Ulcerative - diagnosis
Colitis, Ulcerative - microbiology
Colitis, Ulcerative - pathology
Colon
Colonoscopy
Crohn Disease - diagnosis
Crohn Disease - microbiology
Crohn Disease - pathology
Crohn's disease
Data analysis
Demography
Diagnosis
Diagnosis, Differential
Diagnostic software
Diagnostic systems
Ecological monitoring
Ecology
Endoscopes
Endoscopy
Engineering
Environmental engineering
Feces - microbiology
Female
Gastroenterology
Gastrointestinal diseases
Gastrointestinal Tract - microbiology
Gastrointestinal Tract - pathology
Gastrointestinal tract diseases
Genomes
Hospitals
Humans
Identification methods
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory Bowel Diseases - classification
Inflammatory Bowel Diseases - diagnosis
Inflammatory Bowel Diseases - drug therapy
Inflammatory Bowel Diseases - microbiology
Intestine
Leukocyte L1 Antigen Complex - metabolism
Male
Medical diagnosis
Medicine
Metagenome - genetics
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Patients
Pediatrics
Remission Induction
Reproducibility of Results
RNA
rRNA 16S
Sensitivity
Severity of Illness Index
Slime
Software
Studies
Surveys
Taxa
Taxonomy
Ulcerative colitis
Young Adult
Young adults
title Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20mapping%20of%20the%20gastrointestinal%20microbiota%20identifies%20children%20with%20inflammatory%20bowel%20disease&rft.jtitle=PloS%20one&rft.au=Papa,%20Eliseo&rft.date=2012-06-29&rft.volume=7&rft.issue=6&rft.spage=e39242&rft.pages=e39242-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039242&rft_dat=%3Cgale_plos_%3EA477004357%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325028235&rft_id=info:pmid/22768065&rft_galeid=A477004357&rft_doaj_id=oai_doaj_org_article_dbee976b36a54737ac2c5bf0d90ea952&rfr_iscdi=true