Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy
Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we use...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-06, Vol.7 (6), p.e39152 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e39152 |
container_title | PloS one |
container_volume | 7 |
creator | Sha, Long-Ze Xing, Xiao-Liang Zhang, Dan Yao, Yuan Dou, Wan-Chen Jin, Li-Ri Wu, Li-Wen Xu, Qi |
description | Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE. |
doi_str_mv | 10.1371/journal.pone.0039152 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325028216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477017089</galeid><doaj_id>oai_doaj_org_article_6f57f10a2a894096bba131a860576b09</doaj_id><sourcerecordid>A477017089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</originalsourceid><addsrcrecordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxx28UdiJxekqqKlUlElVM7Wi_OcepXEwfZW2n-P001XXQnkg-3nmfE8e7LsPSVryiX9unFbP0K_ntyIa0J4TUv2IjulNWcrwQh_-Wx9kr0JYUNIySshXmcnjElBJSenWfwJ02THLo_3mIcJonWriMPkPPR52kb0Y-7M4_EAwwC9hTGP4DuMc93DBMNO2zH_PNzd_vqSg472YZYZ81Q8SPWuwRwn2-MUdm-zVwb6gO-W-Sz7ffn97uLH6ub26vri_Galy5rHVdlKiqWpiDCSgUDBipZQI0qkFJEabFmDLdQt5aaVmhVQkFKLFpgEWtSSn2Uf97pT74JaHiwoyllJWMWoSIjrPaJ1sFGTtwP4nXJg1WPB-U6Bj1b3qIQppaEEGFR1QWrRNEA5hUqQUoqG1Enr23Lbthmw1TjG1PmR6PHJaO9V5x4U51UhWJUEPi0C3v3ZYoj_sbygOkiu7GhcEtODDVqdF1ISKkk1m1n_A5VGi4PVKTImfcUxodgTtHcheDQH45SoOXBPZtQcOLUELtE-PG_6QHpKGP8LTIfUAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325028216</pqid></control><display><type>article</type><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi</creator><contributor>Chang, Alice Y. W.</contributor><creatorcontrib>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi ; Chang, Alice Y. W.</creatorcontrib><description>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039152</identifier><identifier>PMID: 22761730</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Animal models ; Animals ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - pathology ; Biology ; Brain ; Brain cancer ; Case-Control Studies ; Cell activation ; Cell body ; Disease Models, Animal ; Dispersion ; Drug resistance ; Electroencephalography ; Epilepsy ; Epilepsy, Temporal Lobe - metabolism ; Epilepsy, Temporal Lobe - pathology ; Ethics ; Excitatory Amino Acid Agonists - toxicity ; Female ; Glioma ; Granular materials ; Granule cells ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - pathology ; Hospitals ; Humans ; Hypertrophy ; Immunoenzyme Techniques ; Kainic Acid - toxicity ; Laboratory animals ; Male ; Mammals ; Medicine ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Molecular biology ; Neural networks ; Neurology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Patients ; Rapamycin ; Rodents ; Science ; Sclerosis - metabolism ; Sclerosis - pathology ; Seizures ; Seizures (Medicine) ; Seizures - chemically induced ; Seizures - metabolism ; Seizures - pathology ; Signal Transduction ; Signaling ; Studies ; Temporal lobe ; Temporal lobe epilepsy ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Trends ; Young Adult</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39152</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Sha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sha et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</citedby><cites>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chang, Alice Y. W.</contributor><creatorcontrib>Sha, Long-Ze</creatorcontrib><creatorcontrib>Xing, Xiao-Liang</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Dou, Wan-Chen</creatorcontrib><creatorcontrib>Jin, Li-Ri</creatorcontrib><creatorcontrib>Wu, Li-Wen</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</description><subject>Adult</subject><subject>Animal models</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Case-Control Studies</subject><subject>Cell activation</subject><subject>Cell body</subject><subject>Disease Models, Animal</subject><subject>Dispersion</subject><subject>Drug resistance</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy, Temporal Lobe - metabolism</subject><subject>Epilepsy, Temporal Lobe - pathology</subject><subject>Ethics</subject><subject>Excitatory Amino Acid Agonists - toxicity</subject><subject>Female</subject><subject>Glioma</subject><subject>Granular materials</subject><subject>Granule cells</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Immunoenzyme Techniques</subject><subject>Kainic Acid - toxicity</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Middle Aged</subject><subject>Molecular biology</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Science</subject><subject>Sclerosis - metabolism</subject><subject>Sclerosis - pathology</subject><subject>Seizures</subject><subject>Seizures (Medicine)</subject><subject>Seizures - chemically induced</subject><subject>Seizures - metabolism</subject><subject>Seizures - pathology</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Studies</subject><subject>Temporal lobe</subject><subject>Temporal lobe epilepsy</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trends</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxx28UdiJxekqqKlUlElVM7Wi_OcepXEwfZW2n-P001XXQnkg-3nmfE8e7LsPSVryiX9unFbP0K_ntyIa0J4TUv2IjulNWcrwQh_-Wx9kr0JYUNIySshXmcnjElBJSenWfwJ02THLo_3mIcJonWriMPkPPR52kb0Y-7M4_EAwwC9hTGP4DuMc93DBMNO2zH_PNzd_vqSg472YZYZ81Q8SPWuwRwn2-MUdm-zVwb6gO-W-Sz7ffn97uLH6ub26vri_Galy5rHVdlKiqWpiDCSgUDBipZQI0qkFJEabFmDLdQt5aaVmhVQkFKLFpgEWtSSn2Uf97pT74JaHiwoyllJWMWoSIjrPaJ1sFGTtwP4nXJg1WPB-U6Bj1b3qIQppaEEGFR1QWrRNEA5hUqQUoqG1Enr23Lbthmw1TjG1PmR6PHJaO9V5x4U51UhWJUEPi0C3v3ZYoj_sbygOkiu7GhcEtODDVqdF1ISKkk1m1n_A5VGi4PVKTImfcUxodgTtHcheDQH45SoOXBPZtQcOLUELtE-PG_6QHpKGP8LTIfUAw</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Sha, Long-Ze</creator><creator>Xing, Xiao-Liang</creator><creator>Zhang, Dan</creator><creator>Yao, Yuan</creator><creator>Dou, Wan-Chen</creator><creator>Jin, Li-Ri</creator><creator>Wu, Li-Wen</creator><creator>Xu, Qi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120627</creationdate><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><author>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Animal models</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Case-Control Studies</topic><topic>Cell activation</topic><topic>Cell body</topic><topic>Disease Models, Animal</topic><topic>Dispersion</topic><topic>Drug resistance</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy, Temporal Lobe - metabolism</topic><topic>Epilepsy, Temporal Lobe - pathology</topic><topic>Ethics</topic><topic>Excitatory Amino Acid Agonists - toxicity</topic><topic>Female</topic><topic>Glioma</topic><topic>Granular materials</topic><topic>Granule cells</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Immunoenzyme Techniques</topic><topic>Kainic Acid - toxicity</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Middle Aged</topic><topic>Molecular biology</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Science</topic><topic>Sclerosis - metabolism</topic><topic>Sclerosis - pathology</topic><topic>Seizures</topic><topic>Seizures (Medicine)</topic><topic>Seizures - chemically induced</topic><topic>Seizures - metabolism</topic><topic>Seizures - pathology</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Studies</topic><topic>Temporal lobe</topic><topic>Temporal lobe epilepsy</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trends</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Long-Ze</creatorcontrib><creatorcontrib>Xing, Xiao-Liang</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Dou, Wan-Chen</creatorcontrib><creatorcontrib>Jin, Li-Ri</creatorcontrib><creatorcontrib>Wu, Li-Wen</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Long-Ze</au><au>Xing, Xiao-Liang</au><au>Zhang, Dan</au><au>Yao, Yuan</au><au>Dou, Wan-Chen</au><au>Jin, Li-Ri</au><au>Wu, Li-Wen</au><au>Xu, Qi</au><au>Chang, Alice Y. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39152</spage><pages>e39152-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22761730</pmid><doi>10.1371/journal.pone.0039152</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-06, Vol.7 (6), p.e39152 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325028216 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Animal models Animals Astrocytes Astrocytes - metabolism Astrocytes - pathology Biology Brain Brain cancer Case-Control Studies Cell activation Cell body Disease Models, Animal Dispersion Drug resistance Electroencephalography Epilepsy Epilepsy, Temporal Lobe - metabolism Epilepsy, Temporal Lobe - pathology Ethics Excitatory Amino Acid Agonists - toxicity Female Glioma Granular materials Granule cells Hippocampus Hippocampus - metabolism Hippocampus - pathology Hospitals Humans Hypertrophy Immunoenzyme Techniques Kainic Acid - toxicity Laboratory animals Male Mammals Medicine Mice Mice, Inbred C57BL Middle Aged Molecular biology Neural networks Neurology Neurons Neurons - metabolism Neurons - pathology Neurosciences Patients Rapamycin Rodents Science Sclerosis - metabolism Sclerosis - pathology Seizures Seizures (Medicine) Seizures - chemically induced Seizures - metabolism Seizures - pathology Signal Transduction Signaling Studies Temporal lobe Temporal lobe epilepsy TOR protein TOR Serine-Threonine Kinases - metabolism Trends Young Adult |
title | Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20spatio-temporal%20pattern%20of%20the%20mammalian%20target%20of%20rapamycin%20(mTOR)%20activation%20in%20temporal%20lobe%20epilepsy&rft.jtitle=PloS%20one&rft.au=Sha,%20Long-Ze&rft.date=2012-06-27&rft.volume=7&rft.issue=6&rft.spage=e39152&rft.pages=e39152-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039152&rft_dat=%3Cgale_plos_%3EA477017089%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325028216&rft_id=info:pmid/22761730&rft_galeid=A477017089&rft_doaj_id=oai_doaj_org_article_6f57f10a2a894096bba131a860576b09&rfr_iscdi=true |