Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy

Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e39152
Hauptverfasser: Sha, Long-Ze, Xing, Xiao-Liang, Zhang, Dan, Yao, Yuan, Dou, Wan-Chen, Jin, Li-Ri, Wu, Li-Wen, Xu, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e39152
container_title PloS one
container_volume 7
creator Sha, Long-Ze
Xing, Xiao-Liang
Zhang, Dan
Yao, Yuan
Dou, Wan-Chen
Jin, Li-Ri
Wu, Li-Wen
Xu, Qi
description Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.
doi_str_mv 10.1371/journal.pone.0039152
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325028216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477017089</galeid><doaj_id>oai_doaj_org_article_6f57f10a2a894096bba131a860576b09</doaj_id><sourcerecordid>A477017089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</originalsourceid><addsrcrecordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxx28UdiJxekqqKlUlElVM7Wi_OcepXEwfZW2n-P001XXQnkg-3nmfE8e7LsPSVryiX9unFbP0K_ntyIa0J4TUv2IjulNWcrwQh_-Wx9kr0JYUNIySshXmcnjElBJSenWfwJ02THLo_3mIcJonWriMPkPPR52kb0Y-7M4_EAwwC9hTGP4DuMc93DBMNO2zH_PNzd_vqSg472YZYZ81Q8SPWuwRwn2-MUdm-zVwb6gO-W-Sz7ffn97uLH6ub26vri_Galy5rHVdlKiqWpiDCSgUDBipZQI0qkFJEabFmDLdQt5aaVmhVQkFKLFpgEWtSSn2Uf97pT74JaHiwoyllJWMWoSIjrPaJ1sFGTtwP4nXJg1WPB-U6Bj1b3qIQppaEEGFR1QWrRNEA5hUqQUoqG1Enr23Lbthmw1TjG1PmR6PHJaO9V5x4U51UhWJUEPi0C3v3ZYoj_sbygOkiu7GhcEtODDVqdF1ISKkk1m1n_A5VGi4PVKTImfcUxodgTtHcheDQH45SoOXBPZtQcOLUELtE-PG_6QHpKGP8LTIfUAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325028216</pqid></control><display><type>article</type><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi</creator><contributor>Chang, Alice Y. W.</contributor><creatorcontrib>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi ; Chang, Alice Y. W.</creatorcontrib><description>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039152</identifier><identifier>PMID: 22761730</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Animal models ; Animals ; Astrocytes ; Astrocytes - metabolism ; Astrocytes - pathology ; Biology ; Brain ; Brain cancer ; Case-Control Studies ; Cell activation ; Cell body ; Disease Models, Animal ; Dispersion ; Drug resistance ; Electroencephalography ; Epilepsy ; Epilepsy, Temporal Lobe - metabolism ; Epilepsy, Temporal Lobe - pathology ; Ethics ; Excitatory Amino Acid Agonists - toxicity ; Female ; Glioma ; Granular materials ; Granule cells ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - pathology ; Hospitals ; Humans ; Hypertrophy ; Immunoenzyme Techniques ; Kainic Acid - toxicity ; Laboratory animals ; Male ; Mammals ; Medicine ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Molecular biology ; Neural networks ; Neurology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Patients ; Rapamycin ; Rodents ; Science ; Sclerosis - metabolism ; Sclerosis - pathology ; Seizures ; Seizures (Medicine) ; Seizures - chemically induced ; Seizures - metabolism ; Seizures - pathology ; Signal Transduction ; Signaling ; Studies ; Temporal lobe ; Temporal lobe epilepsy ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Trends ; Young Adult</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e39152</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Sha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sha et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</citedby><cites>FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chang, Alice Y. W.</contributor><creatorcontrib>Sha, Long-Ze</creatorcontrib><creatorcontrib>Xing, Xiao-Liang</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Dou, Wan-Chen</creatorcontrib><creatorcontrib>Jin, Li-Ri</creatorcontrib><creatorcontrib>Wu, Li-Wen</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</description><subject>Adult</subject><subject>Animal models</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Case-Control Studies</subject><subject>Cell activation</subject><subject>Cell body</subject><subject>Disease Models, Animal</subject><subject>Dispersion</subject><subject>Drug resistance</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy, Temporal Lobe - metabolism</subject><subject>Epilepsy, Temporal Lobe - pathology</subject><subject>Ethics</subject><subject>Excitatory Amino Acid Agonists - toxicity</subject><subject>Female</subject><subject>Glioma</subject><subject>Granular materials</subject><subject>Granule cells</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Immunoenzyme Techniques</subject><subject>Kainic Acid - toxicity</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mammals</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Middle Aged</subject><subject>Molecular biology</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Science</subject><subject>Sclerosis - metabolism</subject><subject>Sclerosis - pathology</subject><subject>Seizures</subject><subject>Seizures (Medicine)</subject><subject>Seizures - chemically induced</subject><subject>Seizures - metabolism</subject><subject>Seizures - pathology</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Studies</subject><subject>Temporal lobe</subject><subject>Temporal lobe epilepsy</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trends</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxx28UdiJxekqqKlUlElVM7Wi_OcepXEwfZW2n-P001XXQnkg-3nmfE8e7LsPSVryiX9unFbP0K_ntyIa0J4TUv2IjulNWcrwQh_-Wx9kr0JYUNIySshXmcnjElBJSenWfwJ02THLo_3mIcJonWriMPkPPR52kb0Y-7M4_EAwwC9hTGP4DuMc93DBMNO2zH_PNzd_vqSg472YZYZ81Q8SPWuwRwn2-MUdm-zVwb6gO-W-Sz7ffn97uLH6ub26vri_Galy5rHVdlKiqWpiDCSgUDBipZQI0qkFJEabFmDLdQt5aaVmhVQkFKLFpgEWtSSn2Uf97pT74JaHiwoyllJWMWoSIjrPaJ1sFGTtwP4nXJg1WPB-U6Bj1b3qIQppaEEGFR1QWrRNEA5hUqQUoqG1Enr23Lbthmw1TjG1PmR6PHJaO9V5x4U51UhWJUEPi0C3v3ZYoj_sbygOkiu7GhcEtODDVqdF1ISKkk1m1n_A5VGi4PVKTImfcUxodgTtHcheDQH45SoOXBPZtQcOLUELtE-PG_6QHpKGP8LTIfUAw</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Sha, Long-Ze</creator><creator>Xing, Xiao-Liang</creator><creator>Zhang, Dan</creator><creator>Yao, Yuan</creator><creator>Dou, Wan-Chen</creator><creator>Jin, Li-Ri</creator><creator>Wu, Li-Wen</creator><creator>Xu, Qi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120627</creationdate><title>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</title><author>Sha, Long-Ze ; Xing, Xiao-Liang ; Zhang, Dan ; Yao, Yuan ; Dou, Wan-Chen ; Jin, Li-Ri ; Wu, Li-Wen ; Xu, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-5d71e5f806f72a6e624d01f65e11ee1fed2beda9d13fd7c24a405c6da27a14973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Animal models</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Case-Control Studies</topic><topic>Cell activation</topic><topic>Cell body</topic><topic>Disease Models, Animal</topic><topic>Dispersion</topic><topic>Drug resistance</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy, Temporal Lobe - metabolism</topic><topic>Epilepsy, Temporal Lobe - pathology</topic><topic>Ethics</topic><topic>Excitatory Amino Acid Agonists - toxicity</topic><topic>Female</topic><topic>Glioma</topic><topic>Granular materials</topic><topic>Granule cells</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Immunoenzyme Techniques</topic><topic>Kainic Acid - toxicity</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mammals</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Middle Aged</topic><topic>Molecular biology</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Science</topic><topic>Sclerosis - metabolism</topic><topic>Sclerosis - pathology</topic><topic>Seizures</topic><topic>Seizures (Medicine)</topic><topic>Seizures - chemically induced</topic><topic>Seizures - metabolism</topic><topic>Seizures - pathology</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Studies</topic><topic>Temporal lobe</topic><topic>Temporal lobe epilepsy</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trends</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Long-Ze</creatorcontrib><creatorcontrib>Xing, Xiao-Liang</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Dou, Wan-Chen</creatorcontrib><creatorcontrib>Jin, Li-Ri</creatorcontrib><creatorcontrib>Wu, Li-Wen</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Long-Ze</au><au>Xing, Xiao-Liang</au><au>Zhang, Dan</au><au>Yao, Yuan</au><au>Dou, Wan-Chen</au><au>Jin, Li-Ri</au><au>Wu, Li-Wen</au><au>Xu, Qi</au><au>Chang, Alice Y. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e39152</spage><pages>e39152-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22761730</pmid><doi>10.1371/journal.pone.0039152</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e39152
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325028216
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Animal models
Animals
Astrocytes
Astrocytes - metabolism
Astrocytes - pathology
Biology
Brain
Brain cancer
Case-Control Studies
Cell activation
Cell body
Disease Models, Animal
Dispersion
Drug resistance
Electroencephalography
Epilepsy
Epilepsy, Temporal Lobe - metabolism
Epilepsy, Temporal Lobe - pathology
Ethics
Excitatory Amino Acid Agonists - toxicity
Female
Glioma
Granular materials
Granule cells
Hippocampus
Hippocampus - metabolism
Hippocampus - pathology
Hospitals
Humans
Hypertrophy
Immunoenzyme Techniques
Kainic Acid - toxicity
Laboratory animals
Male
Mammals
Medicine
Mice
Mice, Inbred C57BL
Middle Aged
Molecular biology
Neural networks
Neurology
Neurons
Neurons - metabolism
Neurons - pathology
Neurosciences
Patients
Rapamycin
Rodents
Science
Sclerosis - metabolism
Sclerosis - pathology
Seizures
Seizures (Medicine)
Seizures - chemically induced
Seizures - metabolism
Seizures - pathology
Signal Transduction
Signaling
Studies
Temporal lobe
Temporal lobe epilepsy
TOR protein
TOR Serine-Threonine Kinases - metabolism
Trends
Young Adult
title Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20spatio-temporal%20pattern%20of%20the%20mammalian%20target%20of%20rapamycin%20(mTOR)%20activation%20in%20temporal%20lobe%20epilepsy&rft.jtitle=PloS%20one&rft.au=Sha,%20Long-Ze&rft.date=2012-06-27&rft.volume=7&rft.issue=6&rft.spage=e39152&rft.pages=e39152-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039152&rft_dat=%3Cgale_plos_%3EA477017089%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325028216&rft_id=info:pmid/22761730&rft_galeid=A477017089&rft_doaj_id=oai_doaj_org_article_6f57f10a2a894096bba131a860576b09&rfr_iscdi=true