Line-tension controlled mechanism for influenza fusion

Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-06, Vol.7 (6), p.e38302-e38302
Hauptverfasser: Risselada, Herre Jelger, Marelli, Giovanni, Fuhrmans, Marc, Smirnova, Yuliya G, Grubmüller, Helmut, Marrink, Siewert Jan, Müller, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e38302
container_issue 6
container_start_page e38302
container_title PloS one
container_volume 7
creator Risselada, Herre Jelger
Marelli, Giovanni
Fuhrmans, Marc
Smirnova, Yuliya G
Grubmüller, Helmut
Marrink, Siewert Jan
Müller, Marcus
description Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.
doi_str_mv 10.1371/journal.pone.0038302
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325028172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477008669</galeid><doaj_id>oai_doaj_org_article_39c3b884b374440792b7416fc98afb8f</doaj_id><sourcerecordid>A477008669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f194b716edab02ee8485a43ddcb6a6036398c965d055c18be88e49ce7d20a393</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPVfNwIy-LHwMCCLt6GND2dyZAmY9OK-utNne4ylb2QXqQkz3mTc963KJ5jtMJU4Hf7OHTB-NUhBlghRCVF5EFxjhUlS04QfXjyf1Y8SWmPUEkl54-LM0IEx1yw84JvXIBlDyG5GBY2hr6L3kO9aMHuTHCpXTSxW7jQ-AHCb7NohpF8WjxqjE_wbFovipuPH26uPi8315_WV5ebpeWK9MsGK1YJzKE2FSIAksnSMFrXtuKGI8qpklbxskZlabGsQEpgyoKoCTJU0Yvi5VH24GPSU8dJY0pKRCQWJBPrI1FHs9eHzrWm-6WjcfrvRuy22nS9sx40VZZWUrKKCsYYEopUgmHeWCVNU8kma72fbhuqFmoLeRjGz0TnJ8Ht9Db-0DSPlQiRBd5MAl38PkDqdeuSBe9NgDjkdyPCkFKYj529-ge9v7uJ2prcQDYh5nvtKKovmRAIZTtHrdU9VP5qaF22FBqX92cFb2cFo-3ws9-aISW9_vrl_9nrb3P29Qm7A-P7XYp-6HNi0hxkR9B2MaUOmrshY6THdN9OQ4_p1lO6c9mLU4Puim7jTP8AH4PzUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325028172</pqid></control><display><type>article</type><title>Line-tension controlled mechanism for influenza fusion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Risselada, Herre Jelger ; Marelli, Giovanni ; Fuhrmans, Marc ; Smirnova, Yuliya G ; Grubmüller, Helmut ; Marrink, Siewert Jan ; Müller, Marcus</creator><creatorcontrib>Risselada, Herre Jelger ; Marelli, Giovanni ; Fuhrmans, Marc ; Smirnova, Yuliya G ; Grubmüller, Helmut ; Marrink, Siewert Jan ; Müller, Marcus</creatorcontrib><description>Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0038302</identifier><identifier>PMID: 22761674</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology ; Biophysics ; Bundling ; Cell Membrane - metabolism ; Computer Science ; Computer simulation ; Control ; Controlled fusion ; Fusion protein ; Gene mutation ; Hemagglutinin Glycoproteins, Influenza Virus - chemistry ; Hemagglutinin Glycoproteins, Influenza Virus - genetics ; Hemagglutinin Glycoproteins, Influenza Virus - metabolism ; Hemagglutinins ; Humans ; Influenza ; Influenza A virus - physiology ; Influenza, Human - metabolism ; Influenza, Human - virology ; Lectins ; Lipid Bilayers - metabolism ; Lipids ; Medicine ; Membrane fusion ; Membrane Fusion - physiology ; Membranes ; Molecular Dynamics Simulation ; Mutants ; Mutation ; Nuclear reactors ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Peptides ; Physics ; Point Mutation - genetics ; Protein Conformation ; Proteins ; Tension ; Viral infections</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e38302-e38302</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Risselada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Risselada et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f194b716edab02ee8485a43ddcb6a6036398c965d055c18be88e49ce7d20a393</citedby><cites>FETCH-LOGICAL-c692t-f194b716edab02ee8485a43ddcb6a6036398c965d055c18be88e49ce7d20a393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386277/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386277/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Risselada, Herre Jelger</creatorcontrib><creatorcontrib>Marelli, Giovanni</creatorcontrib><creatorcontrib>Fuhrmans, Marc</creatorcontrib><creatorcontrib>Smirnova, Yuliya G</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Marrink, Siewert Jan</creatorcontrib><creatorcontrib>Müller, Marcus</creatorcontrib><title>Line-tension controlled mechanism for influenza fusion</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Bundling</subject><subject>Cell Membrane - metabolism</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Controlled fusion</subject><subject>Fusion protein</subject><subject>Gene mutation</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - genetics</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</subject><subject>Hemagglutinins</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A virus - physiology</subject><subject>Influenza, Human - metabolism</subject><subject>Influenza, Human - virology</subject><subject>Lectins</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Medicine</subject><subject>Membrane fusion</subject><subject>Membrane Fusion - physiology</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nuclear reactors</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptides</subject><subject>Physics</subject><subject>Point Mutation - genetics</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Tension</subject><subject>Viral infections</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QHBNGLGfPVfNwIy-LHwMCCLt6GND2dyZAmY9OK-utNne4ylb2QXqQkz3mTc963KJ5jtMJU4Hf7OHTB-NUhBlghRCVF5EFxjhUlS04QfXjyf1Y8SWmPUEkl54-LM0IEx1yw84JvXIBlDyG5GBY2hr6L3kO9aMHuTHCpXTSxW7jQ-AHCb7NohpF8WjxqjE_wbFovipuPH26uPi8315_WV5ebpeWK9MsGK1YJzKE2FSIAksnSMFrXtuKGI8qpklbxskZlabGsQEpgyoKoCTJU0Yvi5VH24GPSU8dJY0pKRCQWJBPrI1FHs9eHzrWm-6WjcfrvRuy22nS9sx40VZZWUrKKCsYYEopUgmHeWCVNU8kma72fbhuqFmoLeRjGz0TnJ8Ht9Db-0DSPlQiRBd5MAl38PkDqdeuSBe9NgDjkdyPCkFKYj529-ge9v7uJ2prcQDYh5nvtKKovmRAIZTtHrdU9VP5qaF22FBqX92cFb2cFo-3ws9-aISW9_vrl_9nrb3P29Qm7A-P7XYp-6HNi0hxkR9B2MaUOmrshY6THdN9OQ4_p1lO6c9mLU4Puim7jTP8AH4PzUw</recordid><startdate>20120628</startdate><enddate>20120628</enddate><creator>Risselada, Herre Jelger</creator><creator>Marelli, Giovanni</creator><creator>Fuhrmans, Marc</creator><creator>Smirnova, Yuliya G</creator><creator>Grubmüller, Helmut</creator><creator>Marrink, Siewert Jan</creator><creator>Müller, Marcus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120628</creationdate><title>Line-tension controlled mechanism for influenza fusion</title><author>Risselada, Herre Jelger ; Marelli, Giovanni ; Fuhrmans, Marc ; Smirnova, Yuliya G ; Grubmüller, Helmut ; Marrink, Siewert Jan ; Müller, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f194b716edab02ee8485a43ddcb6a6036398c965d055c18be88e49ce7d20a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Bundling</topic><topic>Cell Membrane - metabolism</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Controlled fusion</topic><topic>Fusion protein</topic><topic>Gene mutation</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - genetics</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</topic><topic>Hemagglutinins</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A virus - physiology</topic><topic>Influenza, Human - metabolism</topic><topic>Influenza, Human - virology</topic><topic>Lectins</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Medicine</topic><topic>Membrane fusion</topic><topic>Membrane Fusion - physiology</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nuclear reactors</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptides</topic><topic>Physics</topic><topic>Point Mutation - genetics</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Tension</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Risselada, Herre Jelger</creatorcontrib><creatorcontrib>Marelli, Giovanni</creatorcontrib><creatorcontrib>Fuhrmans, Marc</creatorcontrib><creatorcontrib>Smirnova, Yuliya G</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Marrink, Siewert Jan</creatorcontrib><creatorcontrib>Müller, Marcus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Risselada, Herre Jelger</au><au>Marelli, Giovanni</au><au>Fuhrmans, Marc</au><au>Smirnova, Yuliya G</au><au>Grubmüller, Helmut</au><au>Marrink, Siewert Jan</au><au>Müller, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Line-tension controlled mechanism for influenza fusion</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-28</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e38302</spage><epage>e38302</epage><pages>e38302-e38302</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22761674</pmid><doi>10.1371/journal.pone.0038302</doi><tpages>e38302</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e38302-e38302
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325028172
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Analysis
Biology
Biophysics
Bundling
Cell Membrane - metabolism
Computer Science
Computer simulation
Control
Controlled fusion
Fusion protein
Gene mutation
Hemagglutinin Glycoproteins, Influenza Virus - chemistry
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
Hemagglutinins
Humans
Influenza
Influenza A virus - physiology
Influenza, Human - metabolism
Influenza, Human - virology
Lectins
Lipid Bilayers - metabolism
Lipids
Medicine
Membrane fusion
Membrane Fusion - physiology
Membranes
Molecular Dynamics Simulation
Mutants
Mutation
Nuclear reactors
Peptide Fragments - chemistry
Peptide Fragments - genetics
Peptide Fragments - metabolism
Peptides
Physics
Point Mutation - genetics
Protein Conformation
Proteins
Tension
Viral infections
title Line-tension controlled mechanism for influenza fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Line-tension%20controlled%20mechanism%20for%20influenza%20fusion&rft.jtitle=PloS%20one&rft.au=Risselada,%20Herre%20Jelger&rft.date=2012-06-28&rft.volume=7&rft.issue=6&rft.spage=e38302&rft.epage=e38302&rft.pages=e38302-e38302&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0038302&rft_dat=%3Cgale_plos_%3EA477008669%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325028172&rft_id=info:pmid/22761674&rft_galeid=A477008669&rft_doaj_id=oai_doaj_org_article_39c3b884b374440792b7416fc98afb8f&rfr_iscdi=true