Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys

Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-07, Vol.7 (7), p.e39635-e39635
Hauptverfasser: Friederich-Persson, Malou, Aslam, Shakil, Nordquist, Lina, Welch, William J, Wilcox, Christopher S, Palm, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e39635
container_issue 7
container_start_page e39635
container_title PloS one
container_volume 7
creator Friederich-Persson, Malou
Aslam, Shakil
Nordquist, Lina
Welch, William J
Wilcox, Christopher S
Palm, Fredrik
description Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.
doi_str_mv 10.1371/journal.pone.0039635
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325027904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477114895</galeid><doaj_id>oai_doaj_org_article_e48f707ed3154c498328ee13ba48d4b0</doaj_id><sourcerecordid>A477114895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c828t-89f8d63f48e8449c95610406d328e55f28f0b45e32b9f7b45e8a31396a3beb053</originalsourceid><addsrcrecordid>eNqNk9tq3DAURU1padK0f1BaQaG00JlKlmzLL4UhvQUCgV7yKmTpeEaJR3IlOZcf6fdWzkzCuARa9GAhrb11vKWTZc8JnhNakfdnbvBWdvPeWZhjTOuSFg-yfVLTfFbmmD7cme9lT0I4w7igvCwfZ3t5XpWcYraf_V6oIQI6t06da3dpkWvRYJUb-s7YJeq9i2DsLEfGKg8yQNjdvjASxRUgqcEaC8gOqgMXjQYUvbShdz6CR9JqpOFW766MltFcAArRQwjJGmkjG4hGoXOjLVyHp9mjVnYBnm2_B9nPz59-HH6dHZ98OTpcHM8Uz3mc8brluqQt48AZq1VdlAQzXGqacyiKNuctblgBNG_qthpnXFKSopK0gSbFcZC93Pj2nQtiG2kQhOYFzqsas0QcbQjt5JnovVlLfy2cNOJmwfmlkD5V3oEAxtsKV6ApKZhiNR-rAEIbybhmDU5e7zZe4RL6oZm4fTSnixu3zgyiqmkxHv1hW9zQrEErsCnUbqKa7lizEkt3ISjlnODxvDdbA-9-DRCiWJugoOukBTeMv8k44yRn9N8ozhmuS1bXCX31F3p_bltqKVM0xrYulahGU7FgVUUI4_WY__weKg0Na6PSy25NWp8I3k4EiYlwFZdyCEEcff_2_-zJ6ZR9vcOuQHZxFVw3RONsmIJsAyrvQvDQ3t0HwWJszNs0xNiYYtuYSfZi9y7vRLedSP8Aybs1Pw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325027904</pqid></control><display><type>article</type><title>Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Friederich-Persson, Malou ; Aslam, Shakil ; Nordquist, Lina ; Welch, William J ; Wilcox, Christopher S ; Palm, Fredrik</creator><contributor>Chan, Sherine Swee Lin</contributor><creatorcontrib>Friederich-Persson, Malou ; Aslam, Shakil ; Nordquist, Lina ; Welch, William J ; Wilcox, Christopher S ; Palm, Fredrik ; Chan, Sherine Swee Lin</creatorcontrib><description>Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039635</identifier><identifier>PMID: 22768304</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenine ; Adenosine diphosphate ; Adenosine Diphosphate - genetics ; Adenosine Diphosphate - metabolism ; Adenosine monophosphate ; Animals ; Binding sites ; Biology ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - pathology ; Diabetic Nephropathies - genetics ; Diabetic Nephropathies - metabolism ; Diabetic Nephropathies - pathology ; Gene Knockdown Techniques ; Glucose ; Guanosine Diphosphate - genetics ; Guanosine Diphosphate - metabolism ; Hypertension ; Hypoxia ; Ion Channels - genetics ; Ion Channels - metabolism ; Kidney Cortex - metabolism ; Kidney Cortex - pathology ; Kidney diseases ; Kidneys ; Male ; Malondialdehyde ; Malondialdehyde - metabolism ; Medicine ; Membrane potential ; Membrane Potential, Mitochondrial - genetics ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial ADP, ATP Translocases - genetics ; Mitochondrial ADP, ATP Translocases - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitochondrial uncoupling protein 2 ; Musculoskeletal system ; Nephrology ; Oxidative Stress ; Oxygen - metabolism ; Phosphorylation ; Physiological aspects ; Physiology ; Protein expression ; Proteins ; Purines ; Rats ; Rats, Sprague-Dawley ; Renal cortex ; Respiration ; Rodents ; siRNA ; Statistics ; Streptozocin ; Uncoupling Protein 2</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e39635-e39635</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Friederich Persson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Friederich Persson et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c828t-89f8d63f48e8449c95610406d328e55f28f0b45e32b9f7b45e8a31396a3beb053</citedby><cites>FETCH-LOGICAL-c828t-89f8d63f48e8449c95610406d328e55f28f0b45e32b9f7b45e8a31396a3beb053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22768304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79354$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Chan, Sherine Swee Lin</contributor><creatorcontrib>Friederich-Persson, Malou</creatorcontrib><creatorcontrib>Aslam, Shakil</creatorcontrib><creatorcontrib>Nordquist, Lina</creatorcontrib><creatorcontrib>Welch, William J</creatorcontrib><creatorcontrib>Wilcox, Christopher S</creatorcontrib><creatorcontrib>Palm, Fredrik</creatorcontrib><title>Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.</description><subject>Adenine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - genetics</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine monophosphate</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetic Nephropathies - genetics</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Gene Knockdown Techniques</subject><subject>Glucose</subject><subject>Guanosine Diphosphate - genetics</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Hypertension</subject><subject>Hypoxia</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Kidney Cortex - metabolism</subject><subject>Kidney Cortex - pathology</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Male</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - metabolism</subject><subject>Medicine</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial ADP, ATP Translocases - genetics</subject><subject>Mitochondrial ADP, ATP Translocases - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial uncoupling protein 2</subject><subject>Musculoskeletal system</subject><subject>Nephrology</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Purines</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Renal cortex</subject><subject>Respiration</subject><subject>Rodents</subject><subject>siRNA</subject><subject>Statistics</subject><subject>Streptozocin</subject><subject>Uncoupling Protein 2</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAURU1padK0f1BaQaG00JlKlmzLL4UhvQUCgV7yKmTpeEaJR3IlOZcf6fdWzkzCuARa9GAhrb11vKWTZc8JnhNakfdnbvBWdvPeWZhjTOuSFg-yfVLTfFbmmD7cme9lT0I4w7igvCwfZ3t5XpWcYraf_V6oIQI6t06da3dpkWvRYJUb-s7YJeq9i2DsLEfGKg8yQNjdvjASxRUgqcEaC8gOqgMXjQYUvbShdz6CR9JqpOFW766MltFcAArRQwjJGmkjG4hGoXOjLVyHp9mjVnYBnm2_B9nPz59-HH6dHZ98OTpcHM8Uz3mc8brluqQt48AZq1VdlAQzXGqacyiKNuctblgBNG_qthpnXFKSopK0gSbFcZC93Pj2nQtiG2kQhOYFzqsas0QcbQjt5JnovVlLfy2cNOJmwfmlkD5V3oEAxtsKV6ApKZhiNR-rAEIbybhmDU5e7zZe4RL6oZm4fTSnixu3zgyiqmkxHv1hW9zQrEErsCnUbqKa7lizEkt3ISjlnODxvDdbA-9-DRCiWJugoOukBTeMv8k44yRn9N8ozhmuS1bXCX31F3p_bltqKVM0xrYulahGU7FgVUUI4_WY__weKg0Na6PSy25NWp8I3k4EiYlwFZdyCEEcff_2_-zJ6ZR9vcOuQHZxFVw3RONsmIJsAyrvQvDQ3t0HwWJszNs0xNiYYtuYSfZi9y7vRLedSP8Aybs1Pw</recordid><startdate>20120702</startdate><enddate>20120702</enddate><creator>Friederich-Persson, Malou</creator><creator>Aslam, Shakil</creator><creator>Nordquist, Lina</creator><creator>Welch, William J</creator><creator>Wilcox, Christopher S</creator><creator>Palm, Fredrik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20120702</creationdate><title>Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys</title><author>Friederich-Persson, Malou ; Aslam, Shakil ; Nordquist, Lina ; Welch, William J ; Wilcox, Christopher S ; Palm, Fredrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c828t-89f8d63f48e8449c95610406d328e55f28f0b45e32b9f7b45e8a31396a3beb053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - genetics</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine monophosphate</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetic Nephropathies - genetics</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Gene Knockdown Techniques</topic><topic>Glucose</topic><topic>Guanosine Diphosphate - genetics</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Hypertension</topic><topic>Hypoxia</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Kidney Cortex - metabolism</topic><topic>Kidney Cortex - pathology</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Male</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - metabolism</topic><topic>Medicine</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial ADP, ATP Translocases - genetics</topic><topic>Mitochondrial ADP, ATP Translocases - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial uncoupling protein 2</topic><topic>Musculoskeletal system</topic><topic>Nephrology</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Purines</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Renal cortex</topic><topic>Respiration</topic><topic>Rodents</topic><topic>siRNA</topic><topic>Statistics</topic><topic>Streptozocin</topic><topic>Uncoupling Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friederich-Persson, Malou</creatorcontrib><creatorcontrib>Aslam, Shakil</creatorcontrib><creatorcontrib>Nordquist, Lina</creatorcontrib><creatorcontrib>Welch, William J</creatorcontrib><creatorcontrib>Wilcox, Christopher S</creatorcontrib><creatorcontrib>Palm, Fredrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friederich-Persson, Malou</au><au>Aslam, Shakil</au><au>Nordquist, Lina</au><au>Welch, William J</au><au>Wilcox, Christopher S</au><au>Palm, Fredrik</au><au>Chan, Sherine Swee Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-02</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e39635</spage><epage>e39635</epage><pages>e39635-e39635</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22768304</pmid><doi>10.1371/journal.pone.0039635</doi><tpages>e39635</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-07, Vol.7 (7), p.e39635-e39635
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325027904
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adenine
Adenosine diphosphate
Adenosine Diphosphate - genetics
Adenosine Diphosphate - metabolism
Adenosine monophosphate
Animals
Binding sites
Biology
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Diabetic Nephropathies - genetics
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Gene Knockdown Techniques
Glucose
Guanosine Diphosphate - genetics
Guanosine Diphosphate - metabolism
Hypertension
Hypoxia
Ion Channels - genetics
Ion Channels - metabolism
Kidney Cortex - metabolism
Kidney Cortex - pathology
Kidney diseases
Kidneys
Male
Malondialdehyde
Malondialdehyde - metabolism
Medicine
Membrane potential
Membrane Potential, Mitochondrial - genetics
Metabolism
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial ADP, ATP Translocases - genetics
Mitochondrial ADP, ATP Translocases - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitochondrial uncoupling protein 2
Musculoskeletal system
Nephrology
Oxidative Stress
Oxygen - metabolism
Phosphorylation
Physiological aspects
Physiology
Protein expression
Proteins
Purines
Rats
Rats, Sprague-Dawley
Renal cortex
Respiration
Rodents
siRNA
Statistics
Streptozocin
Uncoupling Protein 2
title Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20knockdown%20of%20uncoupling%20protein-2%20increases%20uncoupling%20via%20the%20adenine%20nucleotide%20transporter%20and%20decreases%20oxidative%20stress%20in%20diabetic%20kidneys&rft.jtitle=PloS%20one&rft.au=Friederich-Persson,%20Malou&rft.date=2012-07-02&rft.volume=7&rft.issue=7&rft.spage=e39635&rft.epage=e39635&rft.pages=e39635-e39635&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039635&rft_dat=%3Cgale_plos_%3EA477114895%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325027904&rft_id=info:pmid/22768304&rft_galeid=A477114895&rft_doaj_id=oai_doaj_org_article_e48f707ed3154c498328ee13ba48d4b0&rfr_iscdi=true