Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers
This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nucl...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-07, Vol.7 (7), p.e39087-e39087 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e39087 |
---|---|
container_issue | 7 |
container_start_page | e39087 |
container_title | PloS one |
container_volume | 7 |
creator | Amigó-Correig, Marta Barceló-Batllori, Sílvia Soria, Guadalupe Krezymon, Alice Benani, Alexandre Pénicaud, Luc Tudela, Raúl Planas, Anna Maria Fernández, Eduardo Carmona, Maria del Carmen Gomis, Ramon |
description | This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.
Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.
Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.
Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease. |
doi_str_mv | 10.1371/journal.pone.0039087 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325027892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477114828</galeid><doaj_id>oai_doaj_org_article_a964716b441a4f29992ed38d91968856</doaj_id><sourcerecordid>A477114828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768t-bf883ecb6e9fd6e132e0ba783fda4d613288814323c7f31dc2976ad62512ab623</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpw5Glm0Eo21ooFPZ1K2Tp2FFRrEySS_vvJzduSEovhjE-On7eV9bxOUXxFqM5pjX-fO2H0Cs33_ge5ghRgXj9rDjGgpIZI4g-34uPilcxXiO0oJyxl8URIRwRQRfHhVv2yc58A9GmuzJ6Y4d1mYa-i0klKFMAldbQpxzZroMQS3Xr87al6k3ZOZujjVMxWT3qbV-u7jY-rZRTa6vLFsDYvit1dsja18WLVrkIb6bnSfH729dfZ-ezy6vvF2fLy5muGU-zpuWcgm4YiNYwwJQAalTNaWtUZVhec85xRQnVdUux0UTUTBlGFpiohhF6Urzf-m6cj3IqVJRZuECk5mIkLraE8epaboJdq3AnvbLyPuFDJ1XIh3IglWBVjVlTVVhVLRFCEDCUG4EF43zBsteXabehWYMZzxqUOzA9fNPblez8jaSUC4RHg9OtweqR7Hx5KcccQjWhSJAbnFm8ZXUctAygIWiV7undYrxJlkiSe4LWWfNp-sDg_w4Qk1zbqME51YMfcl0QYZxVAo3oh0fo09WbqE7lAtm-9flcejSVy6quMa444ZmaP0Hly0Dujdy1rc35A8HpgSAzCW5Tp4YY5cXPH__PXv05ZD_usStQLq2id0Oyvo-HYDUVN_gYA7S7v4GRHIfuoRpyHDo5DV2WvdtvgJ3oYcroP5wmJmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325027892</pqid></control><display><type>article</type><title>Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Recercat</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Amigó-Correig, Marta ; Barceló-Batllori, Sílvia ; Soria, Guadalupe ; Krezymon, Alice ; Benani, Alexandre ; Pénicaud, Luc ; Tudela, Raúl ; Planas, Anna Maria ; Fernández, Eduardo ; Carmona, Maria del Carmen ; Gomis, Ramon</creator><contributor>Alquier, Thierry</contributor><creatorcontrib>Amigó-Correig, Marta ; Barceló-Batllori, Sílvia ; Soria, Guadalupe ; Krezymon, Alice ; Benani, Alexandre ; Pénicaud, Luc ; Tudela, Raúl ; Planas, Anna Maria ; Fernández, Eduardo ; Carmona, Maria del Carmen ; Gomis, Ramon ; Alquier, Thierry</creatorcontrib><description>This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.
Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.
Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.
Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0039087</identifier><identifier>PMID: 22802935</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Alzheimer's disease ; Animals ; Axonal plasticity ; Axons - drug effects ; Biology ; Blood glucose ; Body weight ; Body weight gain ; Brain ; c-Fos protein ; Cell morphology ; Compostos de tungstè ; Control methods ; Cytology ; Diabetes ; Diabetis ; Diet, High-Fat ; Disease control ; Drug therapy ; Energy metabolism ; Energy Metabolism - drug effects ; Expressió gènica ; Food and Nutrition ; Food intake ; Gene expression ; Glial plasticity ; High fat diet ; Hypothalamus ; Hypothalamus (lateral) ; Hypothalamus - drug effects ; Hypothalamus - physiology ; Illnesses ; Immunohistochemistry ; In vivo methods and tests ; Intercellular Signaling Peptides and Proteins ; Kinases ; Life Sciences ; Magnetic resonance ; Magnetic resonance imaging ; Malaltia d'Alzheimer ; Male ; Mass spectrometry ; Mass spectroscopy ; Medicine ; Metabolism ; Metabolisme ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Muscle proteins ; Nerve Tissue Proteins - drug effects ; Neurofilaments ; Neuroglia - drug effects ; Neuronal Plasticity - drug effects ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Nutrition ; Obesitat ; Obesity ; Obesity - drug therapy ; Paraventricular nucleus ; Physiological aspects ; Plastic properties ; Plasticity ; Protein Processing, Post-Translational ; Proteins ; Proteomics ; Rates (Animals de laboratori) ; Rats as laboratory animals ; Resonance ; Ressonància magnètica ; Rodents ; SNAP-25 protein ; Sodium ; Sodium tungstate ; Synaptogenesis ; Transcription ; Triglycerides ; Tungsten compounds ; Tungsten Compounds - therapeutic use ; Weight reduction</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e39087-e39087</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Amigó-Correig et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>cc-by (c) Amigó-Correig, Marta et al., 2012 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es">http://creativecommons.org/licenses/by/3.0/es</a></rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Amigó-Correig et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768t-bf883ecb6e9fd6e132e0ba783fda4d613288814323c7f31dc2976ad62512ab623</citedby><cites>FETCH-LOGICAL-c768t-bf883ecb6e9fd6e132e0ba783fda4d613288814323c7f31dc2976ad62512ab623</cites><orcidid>0000-0003-2046-0162 ; 0000-0001-7420-651X ; 0000-0002-8344-0479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389016/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389016/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,26951,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22802935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-bourgogne.hal.science/hal-00723092$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Alquier, Thierry</contributor><creatorcontrib>Amigó-Correig, Marta</creatorcontrib><creatorcontrib>Barceló-Batllori, Sílvia</creatorcontrib><creatorcontrib>Soria, Guadalupe</creatorcontrib><creatorcontrib>Krezymon, Alice</creatorcontrib><creatorcontrib>Benani, Alexandre</creatorcontrib><creatorcontrib>Pénicaud, Luc</creatorcontrib><creatorcontrib>Tudela, Raúl</creatorcontrib><creatorcontrib>Planas, Anna Maria</creatorcontrib><creatorcontrib>Fernández, Eduardo</creatorcontrib><creatorcontrib>Carmona, Maria del Carmen</creatorcontrib><creatorcontrib>Gomis, Ramon</creatorcontrib><title>Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.
Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.
Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.
Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.</description><subject>Actin</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Axonal plasticity</subject><subject>Axons - drug effects</subject><subject>Biology</subject><subject>Blood glucose</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Brain</subject><subject>c-Fos protein</subject><subject>Cell morphology</subject><subject>Compostos de tungstè</subject><subject>Control methods</subject><subject>Cytology</subject><subject>Diabetes</subject><subject>Diabetis</subject><subject>Diet, High-Fat</subject><subject>Disease control</subject><subject>Drug therapy</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Expressió gènica</subject><subject>Food and Nutrition</subject><subject>Food intake</subject><subject>Gene expression</subject><subject>Glial plasticity</subject><subject>High fat diet</subject><subject>Hypothalamus</subject><subject>Hypothalamus (lateral)</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - physiology</subject><subject>Illnesses</subject><subject>Immunohistochemistry</subject><subject>In vivo methods and tests</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Malaltia d'Alzheimer</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolisme</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Obese</subject><subject>Muscle proteins</subject><subject>Nerve Tissue Proteins - drug effects</subject><subject>Neurofilaments</subject><subject>Neuroglia - drug effects</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nutrition</subject><subject>Obesitat</subject><subject>Obesity</subject><subject>Obesity - drug therapy</subject><subject>Paraventricular nucleus</subject><subject>Physiological aspects</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Rates (Animals de laboratori)</subject><subject>Rats as laboratory animals</subject><subject>Resonance</subject><subject>Ressonància magnètica</subject><subject>Rodents</subject><subject>SNAP-25 protein</subject><subject>Sodium</subject><subject>Sodium tungstate</subject><subject>Synaptogenesis</subject><subject>Transcription</subject><subject>Triglycerides</subject><subject>Tungsten compounds</subject><subject>Tungsten Compounds - therapeutic use</subject><subject>Weight reduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpw5Glm0Eo21ooFPZ1K2Tp2FFRrEySS_vvJzduSEovhjE-On7eV9bxOUXxFqM5pjX-fO2H0Cs33_ge5ghRgXj9rDjGgpIZI4g-34uPilcxXiO0oJyxl8URIRwRQRfHhVv2yc58A9GmuzJ6Y4d1mYa-i0klKFMAldbQpxzZroMQS3Xr87al6k3ZOZujjVMxWT3qbV-u7jY-rZRTa6vLFsDYvit1dsja18WLVrkIb6bnSfH729dfZ-ezy6vvF2fLy5muGU-zpuWcgm4YiNYwwJQAalTNaWtUZVhec85xRQnVdUux0UTUTBlGFpiohhF6Urzf-m6cj3IqVJRZuECk5mIkLraE8epaboJdq3AnvbLyPuFDJ1XIh3IglWBVjVlTVVhVLRFCEDCUG4EF43zBsteXabehWYMZzxqUOzA9fNPblez8jaSUC4RHg9OtweqR7Hx5KcccQjWhSJAbnFm8ZXUctAygIWiV7undYrxJlkiSe4LWWfNp-sDg_w4Qk1zbqME51YMfcl0QYZxVAo3oh0fo09WbqE7lAtm-9flcejSVy6quMa444ZmaP0Hly0Dujdy1rc35A8HpgSAzCW5Tp4YY5cXPH__PXv05ZD_usStQLq2id0Oyvo-HYDUVN_gYA7S7v4GRHIfuoRpyHDo5DV2WvdtvgJ3oYcroP5wmJmw</recordid><startdate>20120703</startdate><enddate>20120703</enddate><creator>Amigó-Correig, Marta</creator><creator>Barceló-Batllori, Sílvia</creator><creator>Soria, Guadalupe</creator><creator>Krezymon, Alice</creator><creator>Benani, Alexandre</creator><creator>Pénicaud, Luc</creator><creator>Tudela, Raúl</creator><creator>Planas, Anna Maria</creator><creator>Fernández, Eduardo</creator><creator>Carmona, Maria del Carmen</creator><creator>Gomis, Ramon</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2046-0162</orcidid><orcidid>https://orcid.org/0000-0001-7420-651X</orcidid><orcidid>https://orcid.org/0000-0002-8344-0479</orcidid></search><sort><creationdate>20120703</creationdate><title>Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers</title><author>Amigó-Correig, Marta ; Barceló-Batllori, Sílvia ; Soria, Guadalupe ; Krezymon, Alice ; Benani, Alexandre ; Pénicaud, Luc ; Tudela, Raúl ; Planas, Anna Maria ; Fernández, Eduardo ; Carmona, Maria del Carmen ; Gomis, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768t-bf883ecb6e9fd6e132e0ba783fda4d613288814323c7f31dc2976ad62512ab623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actin</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Axonal plasticity</topic><topic>Axons - drug effects</topic><topic>Biology</topic><topic>Blood glucose</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Brain</topic><topic>c-Fos protein</topic><topic>Cell morphology</topic><topic>Compostos de tungstè</topic><topic>Control methods</topic><topic>Cytology</topic><topic>Diabetes</topic><topic>Diabetis</topic><topic>Diet, High-Fat</topic><topic>Disease control</topic><topic>Drug therapy</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Expressió gènica</topic><topic>Food and Nutrition</topic><topic>Food intake</topic><topic>Gene expression</topic><topic>Glial plasticity</topic><topic>High fat diet</topic><topic>Hypothalamus</topic><topic>Hypothalamus (lateral)</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - physiology</topic><topic>Illnesses</topic><topic>Immunohistochemistry</topic><topic>In vivo methods and tests</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Malaltia d'Alzheimer</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolisme</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Obese</topic><topic>Muscle proteins</topic><topic>Nerve Tissue Proteins - drug effects</topic><topic>Neurofilaments</topic><topic>Neuroglia - drug effects</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nutrition</topic><topic>Obesitat</topic><topic>Obesity</topic><topic>Obesity - drug therapy</topic><topic>Paraventricular nucleus</topic><topic>Physiological aspects</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Rates (Animals de laboratori)</topic><topic>Rats as laboratory animals</topic><topic>Resonance</topic><topic>Ressonància magnètica</topic><topic>Rodents</topic><topic>SNAP-25 protein</topic><topic>Sodium</topic><topic>Sodium tungstate</topic><topic>Synaptogenesis</topic><topic>Transcription</topic><topic>Triglycerides</topic><topic>Tungsten compounds</topic><topic>Tungsten Compounds - therapeutic use</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amigó-Correig, Marta</creatorcontrib><creatorcontrib>Barceló-Batllori, Sílvia</creatorcontrib><creatorcontrib>Soria, Guadalupe</creatorcontrib><creatorcontrib>Krezymon, Alice</creatorcontrib><creatorcontrib>Benani, Alexandre</creatorcontrib><creatorcontrib>Pénicaud, Luc</creatorcontrib><creatorcontrib>Tudela, Raúl</creatorcontrib><creatorcontrib>Planas, Anna Maria</creatorcontrib><creatorcontrib>Fernández, Eduardo</creatorcontrib><creatorcontrib>Carmona, Maria del Carmen</creatorcontrib><creatorcontrib>Gomis, Ramon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amigó-Correig, Marta</au><au>Barceló-Batllori, Sílvia</au><au>Soria, Guadalupe</au><au>Krezymon, Alice</au><au>Benani, Alexandre</au><au>Pénicaud, Luc</au><au>Tudela, Raúl</au><au>Planas, Anna Maria</au><au>Fernández, Eduardo</au><au>Carmona, Maria del Carmen</au><au>Gomis, Ramon</au><au>Alquier, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-03</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e39087</spage><epage>e39087</epage><pages>e39087-e39087</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.
Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed.
Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus.
Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22802935</pmid><doi>10.1371/journal.pone.0039087</doi><tpages>e39087</tpages><orcidid>https://orcid.org/0000-0003-2046-0162</orcidid><orcidid>https://orcid.org/0000-0001-7420-651X</orcidid><orcidid>https://orcid.org/0000-0002-8344-0479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-07, Vol.7 (7), p.e39087-e39087 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325027892 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; Recercat; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actin Alzheimer's disease Animals Axonal plasticity Axons - drug effects Biology Blood glucose Body weight Body weight gain Brain c-Fos protein Cell morphology Compostos de tungstè Control methods Cytology Diabetes Diabetis Diet, High-Fat Disease control Drug therapy Energy metabolism Energy Metabolism - drug effects Expressió gènica Food and Nutrition Food intake Gene expression Glial plasticity High fat diet Hypothalamus Hypothalamus (lateral) Hypothalamus - drug effects Hypothalamus - physiology Illnesses Immunohistochemistry In vivo methods and tests Intercellular Signaling Peptides and Proteins Kinases Life Sciences Magnetic resonance Magnetic resonance imaging Malaltia d'Alzheimer Male Mass spectrometry Mass spectroscopy Medicine Metabolism Metabolisme Mice Mice, Inbred C57BL Mice, Obese Muscle proteins Nerve Tissue Proteins - drug effects Neurofilaments Neuroglia - drug effects Neuronal Plasticity - drug effects Neurosciences NMR Nuclear magnetic resonance Nutrition Obesitat Obesity Obesity - drug therapy Paraventricular nucleus Physiological aspects Plastic properties Plasticity Protein Processing, Post-Translational Proteins Proteomics Rates (Animals de laboratori) Rats as laboratory animals Resonance Ressonància magnètica Rodents SNAP-25 protein Sodium Sodium tungstate Synaptogenesis Transcription Triglycerides Tungsten compounds Tungsten Compounds - therapeutic use Weight reduction |
title | Anti-obesity sodium tungstate treatment triggers axonal and glial plasticity in hypothalamic feeding centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-obesity%20sodium%20tungstate%20treatment%20triggers%20axonal%20and%20glial%20plasticity%20in%20hypothalamic%20feeding%20centers&rft.jtitle=PloS%20one&rft.au=Amig%C3%B3-Correig,%20Marta&rft.date=2012-07-03&rft.volume=7&rft.issue=7&rft.spage=e39087&rft.epage=e39087&rft.pages=e39087-e39087&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0039087&rft_dat=%3Cgale_plos_%3EA477114828%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325027892&rft_id=info:pmid/22802935&rft_galeid=A477114828&rft_doaj_id=oai_doaj_org_article_a964716b441a4f29992ed38d91968856&rfr_iscdi=true |